

Project IST 10069 AIT-WOODDES

Deliverable M2.1

Methodology
for developing real time embedded systems

Contractual Date of Delivery to the EC: T0+18

Actual Date of Delivery to the EC: T0+21

Deliverable Responsible: CEA

Participant(s): CEA, I-Logix, Uppsala, OFFIS, PSA,
MECEL, ICOM

Workpackage: 1.3

Security: Public

Delivery Type: Report

Version: V1.0

Total number of pages: 130

Abstract:

This intermediate deliverable defines the basis of the guidelines for the use of UML notations, profiles
and modelling tools for the modelling of real time embedded systems. Its purpose is to elaborate a
methodology framework, involving several stages as defined in M3, that can be used to describe the way
from analysis and design down to validation and testing. While the work on UML Profile (WP1.2) is
focussed on detailed formalisation of notation and concepts needed for real-time embedded systems
modelling, this task will define which concept and diagram has to be used at the several steps of the
development. It will bring into the methodology the experiences of the industrial applications conducted
in WP4, in order to harmonise the guidelines with the project tools and to smooth the transition between
the different stages of the framework.

Modelling guidelines will be written in order to be usable by any industrial user of the AIT-WOODDES
methodology. Illustrative examples will show how the methodology is applied (WP4.3). In addition,
implications of the methodology on the use of the project tools will be analysed and described by the
tool vendors (i.e., in a dedicated user manual). In particular they will take care of the consistency
between the guidelines and the support provided by the toolset.

AIT-WOODDES Deliverable:

February 2001 M2/CEA/WP1.3/V0.1

Keyword list:

Methodology, Analysis model, Design model, Prototype model, Implementation model, Traceability ,
Consistency rules, Validation methodology, Validation models, Real-Time UML, UML profile, Active
objects, State diagram, Timing notations, Concurrency model, Scheduling policy, Model consistency

Programme Name:IST

Project Number:IST-1999-10069

Project Title: ...AIT-WOODDES

Partners: ...Co-ordinator: PSA (F)

Principal Contractors: MECEL (S), CEA-Leti (F), I-LOGIX (IL), ICOM (EL),

UPPSALA (S), OFFIS (D)

Document Number:.................................M2/CEA/WP1.3/V0.1

Work-Package :..WP1.3

Deliverable Type:.....................................Report

Contractual Date of Delivery:................T0+18

Actual Date of Delivery:.......................... T0+21

Title of Document:...................................Methodology

for developing real time embedded systems

Author(s): ..CEA, I-Logix, Uppsala, OFFIS, PSA, MECEL, ICOM

History:...version 1.0

Availability:..This report is limited to AIT-WOODDES consortium distribution

AIT-WOODDES Deliverable:

February 2001 M2/CEA/WP1.3/V0.1

Internal Page i

Table of Contents

TABLE OF CONTENTS ...I

1 THE AIT-WOODDES METHODOLOGY ...1

1.1 GENERAL PROCESS OVERVIEW ...1
1.2 A MODEL DRIVEN METHODOLOGY..5
1.3 CLASS VS. OBJECT ...5
1.4 CASE STUDY: A CAR SPEED REGULATOR..6

2 PHASE – “BUILD ANALYSIS MODEL” ..9

2.1 ACTIVITY – “BUILD PRELIMINARY ANALYSIS MODEL”.. 10
2.1.1 Activity – “compile dictionary”... 12
2.1.2 Activity – “describe use case”.. 14
2.1.3 Activity – “describe high-level scenario” .. 19
2.1.4 Activity – “classify actors”.. 22
2.1.5 Summary ... 23

2.2 ACTIVITY – “BUILD DETAILED ANALYSIS MODEL”... 24
2.2.1 Activity – “build structural basis”.. 26
2.2.2 Activity – “describe structure view” ... 29
2.2.3 Activity – “describe behavioural view”.. 55
2.2.4 Activity – “describe interactions view” ... 90

3 PHASE – “BUILD DESIGN MODEL” .. 104

3.1 USING UML FOR DESIGN .. 104
3.1.1 Artifacts... 104
3.1.2 Roles\Workers ... 111
3.1.3 Phases and Activities ... 113

4 PHASE – “BUILD IMPLEMENTATION MODEL”.. 130

4.1 OVERVIEW OF THE AIT-WOODDES APPROACH ... 130
4.2 DIAGRAM TO USE FOR IMPLEMENTATION ... 130

4.2.1 The Component Diagram... 131
4.2.2 The Deployment Diagram .. 132

4.3 MODEL CONSISTENCY RULES ... 133
4.4 DEPLOYMENT AND TARGETING... 133

4.4.1 Preliminary Assessment.. 133
4.4.2 Tool Support .. 134

5 PHASE – “BUILD PROTOTYPE MODEL”... 136

5.1 DIAGRAM TO USE... 136
5.2 MODEL CONSISTENCY RULES ... 136

6 PHASE – “VALIDATE MODELS” ... 137

6.1 VALIDATION METHODS OF THE DEVELOPMENT PROCESS.................................. 137

AIT-WOODDES Deliverable:

February 2001 M2/CEA/WP1.3/V0.1

Internal Page ii

6.2 VALIDATION METHODS FOR UML MODELS.. 138
6.2.1 Sanity Checks.. 138
6.2.2 Simulation.. 139
6.2.3 Formal Verification.. 140
6.2.4 Testing .. 145
6.2.5 Other Methods.. 146

6.3 VALIDATION METHODS FOR IMPLEMENTATIONS... 146
6.3.1 Sanity Checks.. 146
6.3.2 Simulation.. 146
6.3.3 Testing .. 147
6.3.4 Other Methods.. 148

APPENDIX 1 - UML BASICS ... 149

1 USE CASE MODELING ... 149

GLOSSARY... 152

BIBLIOGRAPHY .. 153

AIT-WOODDES Deliverable:

October 2001 M2/CEA/WP1.3/V2.1

Internal Page 1

1 THE AIT-WOODDES METHODOLOGY

This chapter is divided into three parts. The first part sets out the original principles on which the method
was based. The second explains the approach used by this method to develop embedded real time
control systems. Part three then describes the characteristics of a simple speed regulator application
that serves to illustrate the concepts discussed all along other sections of this document.

1.1 General process overview

The process engineering concepts used all along this document are extracted from the Software Process
Engineering Metamodel (SPEM) defined by the OMG [1]. In case of you are already used to apply an
exiting process, the SPEM document defines in one annex a translation table for the terminology used in
this document with different existing engineering process such as the RUP, OPEN, …

The AIT-WOODDES methodology relies on the software development cycle presented in [2]. The
development cycle phases covered by the methodology are the following: analysis, design, prototyping,
implementation, verification and validation. Progression from one of these classical phases to the next is
achieved by a continuous and iterative process of refining UML models (Figure 1). As we can see on the
process outline, the AIT-WOODDES profile will be used all along the development lifecycle. Indeed, the
profile contains all the UML extensions definition introduced to ease the modelling of real-time systems
with UML.

 System Implementer System Designer Prototyper System Analyst

implement

prototype

build design model

v & v

Analysis Modelling Rules

Initial Requirements Document

(IRD)

Analysis Model

Prototype

Design Model

v & v

: Iteration

System Application

AIT-WOODDES

UML profile

Implementation Rules

Design Modelling Rules

Prototyping Rules

build analysis model

Figure 1: A continuous, iterative process, from specification to implementation phase.

Phase “build analysis model”

There are two important activities during the specification of the requirements – preliminary and detailed
Analysis Modelling. Preliminary Analysis Modelling is concerned with specifying the overall functions of
the application, in very general terms, as well as the interactions. Detailed Analysis Modelling then

AIT-WOODDES Deliverable:

October 2001 M2/CEA/WP1.3/V2.1

Internal Page 2

provides as thorough and accurate as possible an assessment of the functions to be performed by the
system. At this stage, in addition to various structural and functional aspects, the designer specifies the
real time behaviour of the application. To model the constraints pertaining to quantitative real-time
features (e.g.: deadlines, periods, etc.) and qualitative one (e.g.: concurrency, parallelism, etc.), the
engineer applies the methodology described in the following sections and relying on the UML profile
defined in [3].

Phase “build design model”

The goal of the design phase is to choose a single “optimal” solution for the system described in the
analysis. It identifies things such as concurrency models (which objects are active), scheduling policies,
organization of software elements within deployable components, inter-processor communications, error-
handling policies, etc.

The design phase is divided into three sub-phases: architectural, mechanistic, and detailed. The
architectural design specifies overall strategic decisions such as concurrency model and distributions of
components across processor nodes. The mechanistic design specifies the way individual objects
collaborate sometimes by adding “glue objects” such as containers, iterators and smart pointers. The
detailed design specifies the internal structure and behaviour of every class. This includes internal data
structure and algorithm detail.

Phase “implement”

The implementation is the pre-final stage in the system development process that builds the application
on a given target. Implementation relies primarily on architecture modelling and requires (as expressed in
Figure 1) an iterative and incremental process. According to [14], modelling the system’s architecture is
an essential stage which is represented by five interrelated views: design, use case, process,
deployment and implementation. Regarding implementation in our case, we consider that it
encompasses:

− software development, i.e. production of source code, compilation into binary files and linking with
external libraries e.g. of RTOS primitives for a given target platform;

− deployment of the application modules on the actual platform (possibly a distributed one), i.e.
identifying and mapping the modules to the physical nodes that form the platform on which the
system runs;

− validation of the final application that is running i.e. through debugging (e.g. with a kind of design
tracer that traces back to the specification), and through testing (e.g. with a some test campaigner
that executes test scenarios possibly derived from the specification).

For many real-time systems specially embedded systems, it is often the case that important
architecture decisions are made early in the design cycle, but have then to be amended during the
development process, generally when the implications of these architectural choices are perceived e.g.
at prototyping or implementation. For this reason, it is important that architecture modelling covers:

− the mapping between system elements and physical elements e.g. tasks to processors, data
components to storage devices;

− the hardware characteristics such as speeds, capacities etc.;

− the physical platform structure, processing / storage nodes, interfaces;

− Hardware / Software partitioning and interfaces.

AIT-WOODDES Deliverable:

October 2001 M2/CEA/WP1.3/V2.1

Internal Page 3

Typical UML diagrams to represent these aspects are the component and deployment diagrams,
although additional information has to be put via element properties and relationships. Typical aspects
that should be addressed here are the identification of concurrent tasks, task communication, access to
shared resources, etc.. In addition for a distributed application, deployment may often affect the way in
which components are defined. For example, components cannot cross nodes or processes, and thus
there may be a need to split a component into two or more components.

There are two more essential concerns that must be validated when constructing the implementation of a
real-time system:

− How to test that schedulability and timeliness constraints are met?

− How to trace from requirements down to implementation?

A possible approach to do this is to derive sequence diagrams on which timing requirements can be
annotated. Then tests can be constructed with the purpose of testing that such sequence diagram is
always feasible at run time. More generally if these sequence diagrams are derived from (i.e. materialise)
system use cases, then it should be easier to trace and to test the requirements at implementation level.
Moreover it should also be easier to identify the parts of the system that are likely to be impacted by a
specific set of requirement changes.

Phase “prototype”

At the end of analysis or design stages, the user enriches his model by supplementing the model of the
application in order it can be executed. For example, the body of the object operations will be
complemented in order the execution of the application could supply some analysable results.

The prototype is build in three stages: models transformation (e.g. to apply automatically some design
patterns, …), generation of code (e.g. coding rules, …) and building of executable files (Figure 2).

Code generator
(e.g. coding rules)

Global UML model

T r
Con
Cir

STRU

INTER COMPOR Application
source code

Models transformator
(e.g. design patterns)

Executable file
Application
source code

Link Edition
(e.g. RT-Librairies, …)

+

Figure 2: Support for Application Prototyping.

For prototyping purpose, real time features specification contained in the application model will be taken
into account by a dedicated framework. Indeed, the tool used during this process phase will have to
supply a set of tools (e.g. code generator, models transformers, …) and a set of libraries that will allow
an automatic implementation of real-time concerns specified in the application models. For example, the
ACCORD platform supplies a multi-tasking support through the Objecteering tool of Softeam. In this
case, the real time implementation is automatically realized through a specific code generator and a set
of pre-defined libraries.

Phase “verify & validate”

AIT-WOODDES Deliverable:

October 2001 M2/CEA/WP1.3/V2.1

Internal Page 4

As indicated in Figure 1, the validation of a system is performed in parallel with all three stages of the
development cycle. In addition, validation is also required after the implementation stage has finished.
The overall purpose of performing validation is to locate and eliminate problems in the models as early as
possible. This can be done using various methods. In section 3, we identify a set of methods that can be
applied during the development cycle of a system to perform validation. The methods can roughly be
divided into four groups:

• Sanity Checks – the purpose of the sanity checks are to validate that assumptions made during the
development process are not violated at later stages. The following sanity properties are of particular
interest: syntax and type checking, consistency checks, conformance checks, code sanity checks,
and dead-code detection. Some sanity checks are performed on the UML models, and others on the
actual implementation.

• Simulation – during simulation virtual executions of a system model (or implementation) is performed
to investigate the dynamic behaviour of the system. This is useful for increasing the designer’s
confidence in the model and for debugging. We shall consider simulation methods that are performed
randomly, user-guided, trace-guided, and trace-guided with simulated time, and performance
evaluations. Simulations are mainly performed on the UML models produced during the system
development.

• Verification – these methods are applied to formally establish that a system behaves according to
properties expressed as logical formulae, sequence charts, or by observers in the model. The
properties may be derived from requirement specifications, or design documents produced in the
earlier development stages. The properties that can be verified include: safety, liveness, deadlock,
live-lock, time-stops, and zeno behaviours. Normally, theses checks are performed on the UML
models produced during the design and analysis stages.

• Testing – the methodology of testing is to execute a set of test-runs of an (implementation) model to
identify that it behaves according its specification, and that the different sub components of a system
behaves correctly when composed together. Various methodologies for testing exits, including glass-
box testing, regression testing, conformance testing, run-time verification, and exhaustive test-case
generation. Testing is mainly applied to the implementation model.

Some of the described validations methods can be applied manually. However, tools within the
WOODDES consortium support most of them. In section 3, we shall describe the validation methods in
more detail, and how the tools in WOODDES can be used to perform the suggested validations.

AIT-WOODDES Deliverable:

October 2001 M2/CEA/WP1.3/V2.1

Internal Page 5

1.2 A model driven methodology

With the approach depicted within this document, modelling of a real time application is essentially
based on three models that are in themselves partial, but consistent and complementary views of a
larger, global model (Figure 3).

Régulateur Afficheur

Capteur

 Scenario model Behavior model

Structural model

Figure 3: Construction of a Global Model.

The general idea behind application development is to always manipulate the same model, thus
constantly and iteratively refining it at each phase in the modelling process. The use of a same
formalism, i.e. UML, all along the development cycle eases to achieve a continuous and uniform
development. Partial models contributing to the global model are as follows:

Structural model: This model defines the general architecture (topology) of the application in terms of
classes and the relations between them. Its modelling function is limited to the "class" level of the
application, i.e. to specifying both local class properties and those affecting the application as a whole
(which means accounting for all necessary and possible interactions between classes). The structural
model is described in particular by UML class diagrams.

Behaviour model: This model defines the behaviour of classes involved in the application. It is likewise
concerned with the "class" level only, i.e. with specifying class behaviour. The behavioural model
introduces two object views: that of the protocol, which specifies the global behaviour (also known as the
"life cycle") of the object; and the "triggering" view, which accounts for reactive behaviour of objects such
as reactions to received signals, periodic behaviour, etc. The model may also describe the behaviour of
class operations.

Scenario model: This model is concerned with application "instances" and defines message passing
between these various instances for the purpose of performing a given task. The interaction model is
specifically described by UML use case and sequence diagrams. It has an additional facet to enable
specification of application start-up and initialisation features of an application. Indeed, the application
installation is likewise specified via the interaction model, using a specific sequence diagram dedicated
to this aspect.

1.3 Class vs. Object

A distinction is made in subsequent discussions between model elements characterizing properties
common to several objects (at the "class" level) and those characterizing specific class instance uses
which are thus said to involve the "instance" or "instancing" level of the application).

AIT-WOODDES Deliverable:

October 2001 M2/CEA/WP1.3/V2.1

Internal Page 6

During application modelling, mapping of a model to the real world in which the application will operate,
means reasoning concretely, in terms of objects as "instances". Formalization and factorising of object
properties, on the other hand, requires a more abstract type of reasoning (in terms of "class"). Note that
class identification and formalization are the strong suit of the object oriented approach, since they
facilitate both the modularity and reusability of application elements. Object-oriented methods thus tend
to place particular emphasis on "classes". However, it should be kept in mind that a real application
comprises only instances of classes, and this is the level at which full compliance with project
specifications must ultimately be verified. A model defined by "classes" only, while reusable, cannot in
any case be executed. Too much emphasis on class thus masks another vital modelling constraint:
implementation, i.e. the "instance" level of the application. Subsequent chapters of this document will
regularly underline the distinction between these differing, yet complementary viewpoints.

Remark: There is always some ambiguity in the term "object", which can refer either to:

− a set of properties shared by several entities (it then implicitly defines the generic concept of
"class" by typing all entities whose properties are attached to that class); or to

− a specific entity with well-defined properties, which is considered as a particular "instance" of the
class defined by the properties characterizing that entity.

In UML, the term "object" designates only the second of these two categories, i.e. a specific entity.
The term "class instance" is also used.

1.4 Case Study: a car speed regulator

In order to illustrate the methodology described in this document, we have build an example extracted
from automotive domain, a speed regulator system. This example is as simple as possible but it is also
rich enough to be representative of the usual issues a user may be have to tackle.

Some automobiles are now equipped with an automatic control system that can regulate their speed to a
preselected setpoint value reflecting the normal velocity at which the driver wishes to travel. While very
simple, this example is nevertheless illustrative of the problems encountered in modelling onboard
applications for motor vehicles. Such systems, which exhibit periodic behaviour, must also be designed
for quick response and frequent interaction with the regulation environment.

The system is a speed regulator designed to maintain vehicle speed on a setpoint value selected by
the driver. Speed is maintained with respect to changes in torque, which are signalled to the engine
control system. To do so, the speed regulator uses the following regulating law to compute the
changes:

2
))(arctan(VvehicleVorderk

C
−×

=δ

If Vorder > Vvehicule , then δC>0 and speed increases. When the opposite occurs (Vorder ≤ Vvehicule), then
δC≤0 and speed drops.

Vehicle speed is measured by a speedometer with its own display system. Measurement is performed
by cycles at a frequency of 2 Hz. The speed display is refreshed at the same rate. The speedometer is
assumed to indicate speed in integer form, in m/s.

The regulation system is started when the driver actuates the regulator on/off button, thus generating a
start signal. This is only enabled at vehicle speeds of 50 km/h or more.

AIT-WOODDES Deliverable:

October 2001 M2/CEA/WP1.3/V2.1

Internal Page 7

start signal. This is only enabled at vehicle speeds of 50 km/h or more.

System stop is achieved in any of four ways: implicitly, by depressing the brake pedal; explicitly, by
actuating the on/off button; by stopping the engine (via the starter); or when vehicle speed falls below
the 50 km/h threshold. The anticipated response times for stop are: 0.5 s on braking or on/off switch
actuation and 100 ms when the engine is halted or speed drops to less than 50 km/h.

Moreover, if the driver depresses the accelerator while the regulator is in service, regulation is
interrupted until the accelerator is released. This interruption must take place in at most 200 ms, and
system reinstatement must require no more than 250 ms. The regulator then reinstate control of vehicle
speed and raises it progressively to whatever the setpoint value selected before acceleration.

Where deceleration and acceleration actions occur simultaneously, priority is given to deceleration.
The regulation function is then no longer interrupted but, instead, is completely deactivated.

The speed regulator is equipped with a screen for display of speed setting and regulation system
status (OFF, ON or STDY).

Input variables for the engine control system (which is outside the scope of these design specifications)
are demand torque and change in torque (regulator output), which are used to generate a signal to the
engine. This control signal (engine torque) is then applied to the various engine actuators (intake valves,
throttle, etc.) to obtain the desired mechanical torque. The engine torque command is also computed
on the basis of external, driver-controlled variables such as accelerator and gear positions. The
resulting signal is then routed to the vehicle drive train, which transforms the mechanical torque value to
speed. To enable prototyping of the regulation system environment, the engine control and drive
systems have been grouped together as an "engine unit", for which the following equation is used to
express speed as a function of the various input variables, thus completing the system control loop:








 −
×








+×+×=

50
50

1
1500

)(
3 brkPc

CaccPkV δ

Symbols used for the variables included in this equation are as follows:

- k is a coefficient characterizing the simulated regulation environment. It represents engine efficiency,
including that of the associated drive train.

- accP represents accelerator position and thus characterizes the demand torque (i.e. torque imposed
by the vehicle driver);

- δC is a change in torque signalled by the regulator to the engine control system;

- c is a coefficient that characterizes a load applied to the vehicle. If the coefficient is positive, the load
involved is, for example, a climb or an oncoming wind that slows the vehicle. If it is negative, it
simulates downhill travel or a wind coming from behind the vehicle, which thus causes speed to
accelerate.

- brkP represents the position of the brake pedal.

AIT-WOODDES Deliverable:

October 2001 M2/CEA/WP1.3/V2.1

Internal Page 8

Speed
Regulator

Engine
Unit

Vcar

Cdriver Vtarget

δC

Figure 4 : Speed Regulation System Control Loop.

AIT-WOODDES Deliverable:

October 2001 M2/CEA/WP1.3/V2.1

Internal Page 9

2 PHASE – “BUILD ANALYSIS MODEL”1

This phase2 is the first one in the process life cycle. Its purpose is to describe what the system is
expected to do. All the model elements involved in this phase are derived from the problem domain and
from the physical constraints imposed on the system (e.g. Automotive, Telecom, …). The work product
resulting from this stage are used at the design phase (see section 3) to specify how the “what3” is to be
realized.

The specification phase involves two different roles (Figure 5):

• The Domain Expert role represents a professional who is an expert of the workflows and
terminology that are practiced by the target audience of the application and is able to specify
quantitative requirements for the application. S/he supplies the first input to the process: the Initial
Requirements Document. The domain expert may be also interviewed in order to clarify any
ambiguity in the requirement. Examples of Domain Experts can be a system engineer who is an
expert of a certain telecom technology such as ATM or a car designer responsible for the human
engineering of the car.
• The Requirements Analyst represents a professional whose field of expertise is to construct
requirements analysis models using the methodology described here ([3]). S/he has to analyse the
Initial Requirements Document and rewrites it to build the Analysis Model.

The analysis phase needs an input work product defined as the Initial Requirements Document and
produced a work product called the Analysis Model:

• The Initial Requirements Document (IRD) work product is an informal4 document where the client,
the Domain Expert, describes what the system is expected to do. Usually it is a textual document
written in natural language but it could be also any kind of document that may help in understanding
of the user requirements.

• The Analysis Model work product is an abstraction of the physical solution focused on the domain
view. It specifies the requirements in a very detailed and structured manner. It answers to the
question: What is the system required to do?

The Analysis Model is itself made of two work products that supply two views of the requirements. Both
views are different by their level of details:

• The Preliminary Analysis Model (PAM) work product is the rewriting of the Initial Requirements
Document under the form of graphical models based on UML but it preserves the functional view

1 The whole content of this section is dedicated to describe the AIT-WOODDES analysis stage. It is largely

based on work done at CEA, in particular the PhD work of Sébastien Gérard [4].
2 The “analysis” terms may be misunderstood. Indeed, “analysis model” refers to requirement description

models, also called specification models. And it must be not confused with “model analysis” that may refer for

example to model validation.
3 i.e. the analysis work products that specify the system is expected to do.
4 The “informal” term is used here in opposition of formal techniques using mathematics formalisms to specify

a systems.

AIT-WOODDES Deliverable:

October 2001 M2/CEA/WP1.3/V2.1

Internal Page 10

usually present in such documents. It is the result of the “build preliminary analysis model”
activity.

• The Detailed Analysis Model (DAM) work product is an object oriented model describing the
expected requirements pre-specified in the Preliminary Specification Model. It has to be complete,
unambiguous, determinist and has to describe in detail all the user requirements. It is the result of
the “build detailed analysis model” activity.

 Requirements Analyst

build preliminary analysis model

build detailed analysis model

 Domain Expert

defines initial requirements

Initial Requirements Document

(IRD)

Detailed Analysis Model
(DAM)

Preliminary Analysis Model
(PAM)

Figure 5: The “build analysis models” Phase of the AIT-WOODDES Methodology.

2.1 Activity – “build preliminary analysis model”

This first activity plays a significant role in the project development cycle. It is the process activity at
which product requirements (where they exist) can be reformatted as text and graphics that are easily
accessible even to inexperienced users and become also formal. If it is not yet the case, this activity
also offers the opportunity for the system analyst to become familiar with vocabulary and concepts
specific to the application domain.

During this activity, the specific contributions of the AIT-WOODDES specification method, regarding
other object-oriented approaches such as [5], [6] and [7], entail mainly the following points: a four-
category dictionary structure; rules for naming model elements; introduction of a time constraint
modelling concept; rule for differentiating various system actors. For more concerns relative to use cases
modelling, the reader can have a look on the 6 contained some additional information pertaining to UML
use cases, and s/he can also refer to the following documents5: [6], [8]...

The preliminary specification modelling activity refers to the following activities (Figure 6):

5 This list is of course non-exhaustive.

AIT-WOODDES Deliverable:

October 2001 M2/CEA/WP1.3/V2.1

Internal Page 11

• The “compile dictionary” activity is aimed at categorizing the domain key concepts of the IRD.
The output is a dictionary;

• The “describe use case ” activity is aimed at specifying the set of required functionalities the
system expert does expect the system to do. The output is a use case diagram;

• The “describe high-level scenario” activity is aimed at describing the different scenarios that are
possible for all use cases of the system. The output is a set of high-level sequence diagrams;

• The “classify actors” activity is aimed at specifying if an environment element of the system is
acting on the system or vice versa.

 Requirements Analyst

IRD

Use Cases Models

theSystem

compile dictionary

describe use cases

describe high-level scenario

theSyste
m theSyste

m
theSystem

High-Level Scenarios
Model

{until Domain Expert Agreement}

[All UC* described]

* Use Cases

Dictionary

classify actors

Figure 6: Activity – “build preliminary analysis model” of the AIT-WOODDES methodology.

Preliminary system requirements analysis modelling produces also the following work products (Figure
7):

• The Dictionary work product is a compiling of all the key concepts extracted from the IRD that are
relevant to the domain and the application of interest. It takes the form of a table made of different
columns defining categories the system analyst used to classify the domain key concepts of the
IRD;

• The Use Case functional requirements via use cases and the environment elements interacting with
the system through actors;

• The High-Level Scenario work products are sequence diagrams that describes for each use cases
identified in the use case diagram a set of possible scenarios.

AIT-WOODDES Deliverable:

October 2001 M2/CEA/WP1.3/V2.1

Internal Page 12

Use Cases Model

theSystem

theSystem

High-Level Scenarios Models

possibleSeq

1..*

Dictionary

Preliminary Analysis Model

ucDiag

1

dico

 1

Use Case

Actor

envElt
*

theSystem
1

Use Case
Diagram

describedBy
*

Sequence Diagram

describedBy *

envElt
*

Class

*

*

refersTo
*

refersTo
1

Figure 7: The Preliminary Analysis Model.

2.1.1 Activity – “compile dictionary”

The “compile dictionary” activity serves mainly two purposes:

First, compiling the dictionary teaches the system analyst about the domain covered by his application.
This is because it entails domain-pertinent terms and operations. In learning their meaning, the developer
becomes accustomed to the vocabulary of the domain and the development philosophy applied by its
specialists. This step enhances the synergy needed between system analysts and domain experts to
ensure suitable software development, while optimising chances that the final product will fully match
user requirements.

Second, the dictionary helps identifying various object concepts – classes, attributes, operations,
relations – involved in the application. To compile it, all of the terms used to describe the application in
project specifications are grouped under three headings [9]:

− Names, which enable definition of concepts that correspond to classes or actors;

− Qualifiers, which can be associated with attribute or relationship concepts;

− Verbs, which are often translated as operations and impose relationships between two concepts.

In addition to the features found in dictionaries of other object-oriented approaches, the dictionary
presented here provides a complementary column for description of the real-time constraints associated
with domain concepts extracted from the specifications. In this dictionary, each name is associated with
the verbs and qualifiers that relate to it in the specification.

Table 1 shows the dictionary compiled from speed regulator specifications:

AIT-WOODDES Deliverable:

October 2001 M2/CEA/WP1.3/V2.1

Internal Page 13

Table 1: Dictionary for a Speed Regulation Application.

Finally, the dictionary may serve as basic input for a dedicated tool designed to trace user requirements
throughout application development and successive modelling stages.

Name

(class or actor)

Qualifier

(attribute or
relationship)

Verb

(operation)
Real-Time Constraint

place (regulation) in service 1s

shut down (regulation) 100 ms if engine halted
500 ms if braking or regulator
turned off

(relationship with
speed display)

refresh (display)

interrupt regulation 200 ms

Speed regulator

reinstate regulation 250 ms

demand (setpoint) Speed Setpoint

Normal achieve (normal speed) 2 Hz

Brake pedal depress

release

Accelerator depress

release

On/off button activate

deactivate

Starter turn ignition key

remove key

Display screen display regulator status

Control equation calculate

Regulator screen display

Speedometer

AIT-WOODDES Deliverable:

October 2001 M2/CEA/WP1.3/V2.1

Internal Page 14

2.1.2 Activity – “describe use case”

In the same way as for most other UML-based object-oriented methods, the first graphic modelling
activity is to define system use cases. Use cases make it possible for functional requirements to be
captured in a structured way (see 6 for more details on this point).

Use case diagrams are used only at the system level to describe the behaviour at a high level of
abstraction. At this moment of the development, the application to be modelled acts as a "black box";
and this box corresponds to what is referred to here as the “modelled system" or simply the “system”
itself.

Constructing a use case diagram is useful at least for the following reasons [10] [11]:

1 - it enables domain specialists to specify a system from the professional's standpoint, yet precisely
enough for the developer to transform it into a real, operational system;

2 - the elements making up use case diagrams (essentially actors and use cases) provide simple means
of expression for use by all "players" involved in the life of a system (domain specialists, IT system
developers and users). In this way, people with differing perspectives on this system can exchange
ideas for the purpose of improving its development;

3 - use cases can serve as a basis for validating system implementation, for example by allowing to
derive sequence diagrams that can be used for implementation testing against the initial
requirements;

4 - it results in a clear identification of application boundary in order to well define what is the inside and
what is the outside of the application to develop.

As described in the Figure 8, the “models use cases” activity refers to three steps: “identify
environment”, “identify services” and “identify relationships”. The order of these different steps is
immaterial and moreover the output work product resulting of this activity, i.e. the use case diagram, is
build by iteration of the three steps. It is evident that the “identifies relationships” step may be executed
once some actors and use case have been identified. The output of this step is then the use case model
part of the PAM.

The “Use Cases Model” work product, as described in Figure 7, is a set of use cases (i.e. domain
functions) that are clustered in a box, the system, and that are interconnected and also linked with the
environment of the system via actors elements. All this models elements are depicted though the use of
a use case diagram.

AIT-WOODDES Deliverable:

October 2001 M2/CEA/WP1.3/V2.1

Internal Page 15

 Requirements Analyst

IRD Use Cases Model

theSystem

{until Domain Expert Agreement}

identify services

identify relationships

identify environment

{or}

Figure 8: the "build use cases diagram" Activity of the AIT-WODDES Methodology.

2.1.2.1 Step – “identify environment”

Because a system never operates in isolation, the first job of the developer is to identify any "objects"
external to, but interacting with, the system. Such objects are known as "actors".

Actors may be of different types: living beings (whether human or not); electronic devices (e.g. sensors)
or software. In a use case diagram, they appear as matchstick figures6. However, stereotypes can be
used to group them by category. Since each stereotype can be associated with a particular icon, it is
possible to also supplement use case diagrams with domain-specific notations that enhance their
information content.

There are three possible knowledge sources for identifying application concepts as actors: domain
specialists, project specifications (which are usually drafted by domain specialists) and the dictionary,
which "filters" the content of the specifications".

In the case described here, the name column of the dictionary (Table 1) contains the key application
concepts drawn from these specifications. Concepts "external" to the system are then identified from
this list, for modelling purposes (Table 2 shows these concepts in bold face type).

… to generate a signal to the engine…

… The resulting signal is then routed to the vehicle drive train…

… the engine control and drive systems have been grouped together as an engine unit…

…The regulation system is started when the driver actuates the regulator on/off button…

…by depressing the brake pedal…

… by stopping the engine (via the starter …

… Moreover, if the driver depresses the accelerator …

… The speed regulator is equipped with a screen for display of speed setting…

6

AIT-WOODDES Deliverable:

October 2001 M2/CEA/WP1.3/V2.1

Internal Page 16

Table 2: Specification Excerpt Showing Concepts External to the System.

Concepts shown in bold face are then renamed, i.e. associated with a "system name" to be used in
subsequent modelling and implementation phases. In order to help user in this job, the Modelling rule 1
:is defined. But in any case, this a mandatory rule and in case of an industry has already a convention
notation, the users may replace it by their own. However, whatever the naming convention the user
adopts, it has to include at least the following constraint: the “system name” contains no punctuation,
diacritical marks or spaces. So in order to satisfy this constraint the following modelling rule is proposed.

Modelling rule 1 : System names may also be build following the naming
convention rules7:

− if it is made up of several words, these one are concatenated on removal of spaces to become a
single name;

− the first letter of each word in the name of an actor is written in upper case;

− diacritical and punctuation marks are replaced by "_".

Table 3 below lists the seven main application concepts interacting with the speed control system, yet
considered to be external to it. These concepts are thus identified as system actors. The second column
in this table contains the "system name" associated with each actor and that will be used within models
during the next steps of the development.

Type of Actor Assigned "System Name"

engine unit8 EngineUnit

speedometer Speedometer

accelerator Accelerator

brake pedal BrakePedal

regulator on/off button RegulatorOnOffButton

engine starter EngineStarter

regulator screen RegulatorScreen

Table 3: Speed Regulation System Actors with their "System Names".

As a further advice for finding actors, it can be said that:

− for every actor, there should be at least one user which will enact the role; a user here can be at any
level of abstraction, for example, the driver or a software module;

− there should be a minimal overlap (ideally no overlap) of roles between actors. This should prevent
having two actors that have essentially the same role;

7 Each country language can add its own rules to manage their specific notational points (e.g. accents in

French, …)
8 As suggested in project specifications, engine control and drive systems have been grouped together here

under the single heading "engine unit".

AIT-WOODDES Deliverable:

October 2001 M2/CEA/WP1.3/V2.1

Internal Page 17

− all actors should be given relevant names (as in the table) and short textual descriptions of the role
they play and how they use the system.

Based on the above table of system actors, it is possible to create the first UML diagram, i.e. the use
case diagram. In this diagram, the system is depicted at the center, as a white rectangle containing the
name of the developed application. Identified actors are then positioned around the rectangle (system)
with which they interact in the application (Figure 9).

Speed Regulation System

RegulatorOnOffButton

EngineStarter

 Accelerator

BrakePedal
Speedometer

RegulatorDisplay

EngineUnit

Figure 9: Depiction of Actors in a Use Case Diagram.

At the end of this first phase, in the use case diagram description, the boundary between the system
and the outside environment has been clearly identified. Since the system itself is also clearly
delineated, it is now possible to identify its use cases, i.e. the main functions it is expected to perform.

2.1.2.2 Step – “identify services”

Identification of main system functionality relies on the same knowledge sources as for actors – domain
specialists, project specifications and the application dictionary.

Services identified in the specifications are generally associated with the verbs listed in the dictionary for

key concepts of the system (in this case the regulator). In our example, there are five key functions:

maintain vehicle speed at setpoint value, start, stop, interrupt and reinstate speed regulation (Table 4).

… designed to maintain vehicle speed on a setpoint value…

… The regulation system is started…

… System stop …

… regulation is interrupted until…

… The regulator then reinstates control…

Table 4: Specification Excerpt Showing Major System Functions.

AIT-WOODDES Deliverable:

October 2001 M2/CEA/WP1.3/V2.1

Internal Page 18

These functions therefore constitute the system use cases and result, for the example of interest here, in
the use case diagram given below:

Speed Regulation System

 maintain set speed

 stop regulation

 start regulation

 interrupt regulation

 reinstate regulation

RegulatorOnOff Button

EngineStarter

 Accelerator

BrakePedal

Speedometer

RegulatorDisplay

EngineUnit

Figure 10: Depiction of Use Cases in a Use Case Diagram.

2.1.2.3 Step – “identify relationships”

The third and last step in the construction of a use case diagram consists of identifying relationships
between use cases and actors. Such relationships ensure communication between actor and system for
the purpose of performing the functionality associated with the use case linked to the actor. These are
not "oriented" relationships and do not specify communication (types of exchanged data or commands).

Further study of project specifications and of verbs identified in the dictionary (
Table 1, column 3) enables the addition of relevant links to the speed regulator use case diagram.

… Speed is maintained with respect to changes in torque, which are signalled to the engine control
system …

… Vehicle speed is measured by a speedometer …

… The regulation system is started when the driver actuates the regulator on/off button , thus
generating a start signal …

… System stop… by depressing the brake pedal …

… System stop…by actuating the on/off button …

… System stop… by stopping the engine…

…System stop… when vehicle speed falls below 50 km/h …

…if the driver depresses the accelerator… regulation is interrupted …

… is interrupted until the accelerator is released …

… with a screen for display of speed setting and regulation system status …

Key :

Expression associated with an actor

Expression associated with a use case

AIT-WOODDES Deliverable:

October 2001 M2/CEA/WP1.3/V2.1

Internal Page 19

Expression associated with a relationship between an actor and a use case

Table 5: Specification Excerpt Showing Links between Actors and Use Cases.

This results in the final version of the use case diagram depicted in Figure 11.

RegulatorOnOff Button

EngineStarter

 Accelerator

BrakePedal

Speedometer

RegulatorDisplay

EngineUnit

Speed Regulation System

 maintain speed

stop regulation

 interrupt regulation

reinstate regulation

 start regulation

Figure 11: Use Case Diagram for a Speed Regulation System.

In the final use case diagram, the points at which a system communicates with its environment are
identified, but the types, meanings, and protocol of such interactions are not yet specified. The next
section describes how this process takes place.

2.1.3 Activity – “describe high-level scenario”

For each use case specified in the use case diagram work product, the various possible scenarios are
then identified and described in detail. Such scenarios are to be considered as use case instances. The
purpose of this phase is to obtain all available information relating to the function represented by the use
case, either from domain specialists or in documents included in the project specification package.
These data, which describe the relevant scenario in text form are then translated into sequence
diagrams. This phase focuses on describing the sequence of messages exchanged by the system with
the actors making up its environment.

Example: For the "stopRegulation" use case, there are three possible scenarios: "speed regulation
stopped by actuating the regulator on/off button", "speed regulation stopped by braking" and "speed
regulation stopped when engine is halted".

In the first scenario, "regulation stopped via on/off button", the environment sends a message to the
system indicating that the on/off button has been actuated. The system then stops the regulation
process and updates its display in less than a half second. The sequence diagram in Figure 12
describes the "regulation stopped by on/off button" of the use case "stop regulation". This scenario must
be carried out within 500 ms.

AIT-WOODDES Deliverable:

October 2001 M2/CEA/WP1.3/V2.1

Internal Page 20

: RegulatorOnOffButton
a : deactivate()

:RegulatorDisplay

 stopRegulation()
update()

:SpeedRegulator

RTF
{ a.receiveTime,Deadline(500, mSec) ms }

Figure 12 : "regulation stopped via regulator On/Off button" Instance of "stopRegulation" Use Case.

Note that real time constraints set by project specifications already appear at the preliminary analysis
level. The type of notation used here is that recommended by UML, i.e. a constraint (in brackets) owning
a timing expression. However, specialized real time constraint semantics are provided via the keyword
"RTF" in brackets, followed by keywords and numerical characterizing the type of time constraint
(deadline, period, priority, etc.). Parameters of the RTF-type tagged value are expressed using, among
others, UML-defined time functions like receiveTime and sendTime, together with additional keywords
(see section 2.2.3.5 p.79 and [3] for more details on these concepts). In the example shown in Figure
12, the tagged value contained in the time constraint attached to the deactivate message has two
parameters:

− the first is the reference date used as the starting point for expressing tagged value time properties. In
the example given here, the reference date is the date on which the deactivate message is received;

− the second parameter, "Deadline", is a possible RTF parameter specifying the deadline for a
treatment. In this case, it corresponds to the maximum time allowed for the task triggered by
reception of the deactivate message. This applies to all of the treatments performed in the sequence
initiated by said message. In the scenario shown in Figure 12, the time constraint, i.e. "500 ms
deadline", takes effect from receipt of the triggering event –deactivate- and lasts until the end of
whatever the longest of the triggered actions.

The time constraint could also have been expressed using basic UML mechanisms. To do so, in a
sequence diagram, UML proposes message tagging and use of specific time functions (such, for
example, as receiveTime, sendTime) to express message time characteristics for the UML constraints
shown in brackets. The number of time functions is unlimited, thus allowing the user to invent any new
ones (elapsedTime, executionStartTime, queuedTime, etc.) he may need. The example given in
Figure 13 uses two specific time functions, executionEndTime and receiveTime, which designate the
completion time of the treatment triggered by a message and the time on which a message was received
respectively. The time constraint shown in brackets in the following example thus specifies, in a form
equivalent to the notation introduced in ([4] and [12]), that all of the treatments performed by the task
initiated by the deactivate message must be completed in 500 milliseconds or less.

AIT-WOODDES Deliverable:

October 2001 M2/CEA/WP1.3/V2.1

Internal Page 21

: RegulatorOnOffButton
a : deactivate()

: RegulatorDisplay

b : stopRegulation()
c : incrementDisplay()

:SpeedRegulator

RTF
{ Max (a.executionEndTime , b.executionEndTime , c.executionEndTime) – a.receiveTime ≤ 500

ms }

Figure 13 : Specification of a Time Constraint using Time Tags.

However, there are two advantages to using such ({RTF=(…)})-type time constraint to specify time
properties of an application in sequence diagrams:

− the same type of constraint will be used to specify time properties in both sequence diagrams and
state diagrams, throughout the application development cycle. This provides a uniform approach to
time constraint specification that can only benefit model consistency;

− the RTF may have different time characteristics, such as earliest starting time, a period, a property,
etc. Its various possibilities are described in greater detail in the notation document [12].

In order to maintain a uniform approach to time constraint specification, those constraints expressed
using message tags and real-time functions will be converted into an RTF-type constraint. For example,
the time constraint shown in Figure 13 is strictly equivalent to that depicted in Figure 12. The constraint
defined by the RTF value in this example sets only one parameter: the deadline associated with the
treatment. The deadline is based, in this case, on an absolute date that is specified implicitly, since, by
default, the reference date is the date of reception of whatever the event triggering the sequence. In the
example shown in Figure 12, the reference date is thus the date on which the deactivate event signal is
received.

The second scenario is similar, except that this time, the event triggering the sequence is “depressing
brake pedal”.

AIT-WOODDES Deliverable:

October 2001 M2/CEA/WP1.3/V2.1

Internal Page 22

:BrakePedal
depress()

stopRegulation()
update()

:SpeedRegulator

: RegulatorDisplay

Note: By default, the time constraints specified in an RTF are based on the date of reception of
the event triggering the sequence, i.e. here depress.receiveTime().

RTF
{ Deadline(500, mSec) }

Figure 14 : "speed regulation stopped by braking" Instance of the "stopRegulation" Use Case.

2.1.4 Activity – “classify actors”

The work product of the previous activity, the high-level sequence diagrams, provides the opportunity for
specifying the type of role – passive or active – played by the actor with respect to the system. This
information will be used in the subsequent modelling phase to automatically construct a generic
component architecture and also constructs automatically from preliminary analysis models the bases of
the detailed analysis models. It is in fact interesting to associate two specific packages with a same
component. Indeed, by distinguishing between interaction taking place in the system-to-environment
direction (i.e. how the system acts on its environment or retrieves data from the latter) from that occurring
from environment to system (i.e. how the environment stimulates or controls the system), it is possible
to improve the structure of the component interface with its environment. The two additional packages are
thus referred to as "provided interface package" and "required interface package" respectively.

To model this characteristic of an actor, both following actor stereotypes are introduced: « active » and

« passive »: an active actor may be depicted as

 and a passive one as .

An actor cannot be active and passive at the same time. If analysis of its function reveals a situation of
this type, two actors, one for each (active and passive) role must be incorporated into the model.
Identification of the (active or passive) role of an actor with respect to the system requires analysis of the
sequence diagrams in which it is involved and application of the following rules:

Modelling rule 2 : If an actor's role in a sequence diagram is to output messages
and receive responses to these messages, said actor is considered to be active and is therefore
stereotyped as such. If, on the contrary, it serves only to receive messages sent by the system, it is
said to be passive (even if it responds to the messages received) and is stereotyped accordingly.

Where analysis of links between actor and system shows that the actor is both passive and active, a
split is necessary into two actors: one playing the active role and the other the passive role.

This results in the following use case diagram:

AIT-WOODDES Deliverable:

October 2001 M2/CEA/WP1.3/V2.1

Internal Page 23

RegulatorOnOffButton

EngineStarter

 Accelerator

BrakePedal

Speedometer

RegulatorDisplay

EngineUnit

Speed Regulation System

 maintain speed

 stop regulation

 interrupt regulation

 reinstate regulation

 start regulation
« active »

« active »

« active »

« active »

« passive »

« passive »

« passive »

Figure 15 : Specification of Actors' Active or Passive Roles in the Use Case Diagram.

2.1.5 Summary

At the end of this phase, the global model for the application of interest thus comprises:

− a dictionary;

− a use case diagram;

− a set of high level sequence diagrams.

In the “models preliminary analysis” phase, dictionary construction enables the system designer to
familiarize himself with the vocabulary of the domain for which his application is being developed. The
dictionary serves as a source of information for identifying concepts to be included in the models.

The collaboration diagram then permits specification of relevant actors and use cases, together with the
relationships between them. At this stage, identification of actors likewise facilitates determination of the
system boundary. Once this boundary has been clearly defined, it is easier to identify the functions to be
carried out by the system, i.e. its use cases. It is then possible to link the system with its environment
by specifying the relationships between actors and use cases.

Finally, the high level sequence diagrams describe the different possible scenarios for each use case.
These diagrams specify the sequences of messages exchanged with the environment for the purpose of
performing a given function (the use case) within a given context. At this modelling level and, whenever
possible, the diagrams should have an RTF (Real Time Feature)-type constraint introduced in [12]. This
feature contains the time properties to be attached to the message sequence and incorporated into the
constructed system.

Preliminary analysis thus enables rewriting (and, for some aspects, initial drafting) of a set of more formal
specifications for the application. It also provides a series of application models that combine a functional
viewpoint (which is often that of domain specialists) with the object-oriented approach that will prevail in
the rest of the development process. Because this phase involves few object concepts and relies largely
on "intuition", it can be performed as easily by a domain specialist (learning time for the relevant

AIT-WOODDES Deliverable:

October 2001 M2/CEA/WP1.3/V2.1

Internal Page 24

concepts and diagrams is short) as by an experienced developer. It identifies communication links
between the different actors participating in system development, thus enhancing the quality of the
development process and ensuring that the finished product will match desiderata expressed at the
outset of the project. Finally, it lays the groundwork required for subsequent modelling phases such as
the actors identification that will be translated in detailed analysis concept, in this case interface
classes.

2.2 Activity – “build detailed analysis model”

The clear, unambiguous model of user needs that results from preliminary analysis still reflects primarily
a functional approach. The aim of the subsequent phase is to build a global application model based on
user requirements expressed essentially as use cases and sequence diagrams. This phase is
concerned with finding answers to the following questions:

"What will my system be able to do (i.e. what internal functions will it afford)?"

To answer this question, it is proposed to organize global model construction around three partial, but
complementary and consistent "sub-models" (see section 1.2): a structural model, a behaviour model
and an interaction model. The rest of this section (i.e. 2) is devoted to the detailed analysis stage
through a description of these sub-models which, when taken together, constitute the complete
application specification (structure in section 2.2.1, behaviour in 2.2.3 and interaction in section 2.2.4),
and places special emphasis on their points of consistency.

The modelling of an application relies also on the three following sub-models described in the rest of the
section. But the order following the one the model are here presented is not mandatory. Of course,
because following object oriented approaches, statecharts are used to describe the behaviour of objects,
it seams difficult to start to model an application with its behaviour without previously define some
objects in the application. But the user can also choice to start by constructing either sequence
diagrams or class diagrams. After a first draft of one of these diagrams has been achieved, the order to
manipulate the sub-models has no importance. Indeed, each one will be continuously refined in order to
reach a point satisfying the requirements. Moreover, the three models being connected through an
overlapping of manipulated concepts, when a user updates a sub-model, he has to update both other
sub-models. For example, if a user adds a transition in the statechart of a class and that she/he defines
for this new transition a new call event, she/he will have to add the corresponding operation in the class
structure he/she has modified the behaviour.

The specification phase involves two different roles (Figure 16):

The Domain Expert role represents a professional who is an expert of the workflows and terminology
that are practiced by the target audience of the application and is able to specify quantitative
requirements for the application. S/he supplies the first input to the process: the Initial Requirements
Document. The domain expert may be also interviewed in order to clarify any ambiguity in the
requirement. Examples of Domain Experts can be a system engineer who is an expert of a certain
telecom technology such as ATM or a car designer responsible for the human engineering of the car.

All along the detailed requirements modelling activity, this actor has to performs the following activities:

• The “build structural basis” activity is aimed at building from the preliminary analysis model (PAM)
a first version of the DAM’ structural model. This first draft is also detailed/refined by successive

AIT-WOODDES Deliverable:

October 2001 M2/CEA/WP1.3/V2.1

Internal Page 25

iterations of the three following activities until the analysis model reaches a detailed and complete
level satisfying the domain expert.

Once this first activity is achieved, the detailed requirements analyst operates iteratively the three
following activity until s/he validates9 all systems requirements has been sufficiently detailed.

• The “describe interactions view” activity is aimed at describing the different detailed scenarios
that are possible. This activity produces a set of sequence diagrams.

• The “describe structure view” activity is aimed at specifying the structure of the application under
the form class diagrams.

• The “describe behavioural view” activity is aimed at specifying the behaviour of the application.
The work products resulting from this activity is the behavioural model.

 Detailed Requirements Analyst

{until all requirements has been detailed}

describe behavioural view

describe structure view

describe interactions view

Structural Model

B A

C

Detailed Scenarios Model

Behavioural Model

Use Cases Model

theSystem

High-Level Scenarios Model

theSystem

1 Preliminary Analysis Model

build structural basis

Dictionary

Figure 16: Activity – “build detailed analysis model” of the AIT-WOODDES methodology.

This phase is directly fed by output work products stemming from the preliminary requirements analysis
phase (the previous one) and it provides a work product called the Detailed Analysis Model (DAM, see
Figure 5). As it is described in Figure 17, this work product is composed of three models that describe
three complementary and consistent views (or aspects) of the system under modelling (see the section
1.2 p.5 for more detail on this subject).

• The Detailed Scenarios Model work product describes the interactions, i.e. message exchange
sequences, that take place within the application. It is modelled under the form of sequence

9 This point is tackled in section describing verify&validate activity.

AIT-WOODDES Deliverable:

October 2001 M2/CEA/WP1.3/V2.1

Internal Page 26

diagrams describing the set of interactions and may be accompanied by specialized activity
diagrams dedicated to clarify links/constraints between the different identified scenarios.

• The Structural Model work product describes the structural aspect of the system. Indeed, it
expresses how the different requirements are organized. It is modelled thanks to class diagrams.

• The Behavioural Model work product describes the behavioural aspect of the system. It specifies
the logic behaviours of a system via the use of states-transitions diagrams and algorithmic
behaviours via activity diagrams.

Structural Model

B A

C

Detailed Scenarios Model

Behavioural Model

Detailed Analysis Model

interView
1

structView
1

behavView
1

describedBy
*

Sequence Diagram

describedBy
*

Ordered Sequences Diagram
Diagram

referTo *

1

describedBy
*

Class Diagram

logicBehav
*

State Diagram

algoBehav
*

Activity Diagram

Figure 17: The Detailed Analysis Model.

2.2.1 Activity – “build structural basis”

The actor of this activity is the detailed requirements analyst. Nevertheless, this activity may be easily
automated in the tool supporting the approach if this latter offers possibilities to add functionalities
allowing to manipulate in read/write mode the application model.

The following paragraphs present a structural template based on a layered model. This model enables
structuring the system in such a way as to facilitate the development of a component by emphasizing on
specification of its interfaces (Provided and Required). Indeed, one insist on both following issues
regarding to component development:

− How to use a component through the definition of a clear provided interface?

− What are the requirements of a component to be used and how to plugging it in the environment
needed for its running through the definition of a clear required interface?

To facilitate construction of an application in terms of reusable components, one advocates a generic
software architecture that places emphasis on separation between the core of the system and its
interface with the environment. This architecture is divided into three separate packages (Figure 18). The
first is defined by the ProvidedInterface package describing active interaction points (i.e. where and how
the environment "stimulates" the system). The lowermost package called RequiredInterface describes
the points at which the system interacts with its environment and models the environmental interface

AIT-WOODDES Deliverable:

October 2001 M2/CEA/WP1.3/V2.1

Internal Page 27

required for the system to operate. Indeed, this package defines the specification the environment
needed to run the developed component will have to implement (see section 4 on prototyping for more
details on this point). The middle layer describes the core of the system and is also called the Core
package. It incorporates the actual application model.

For reasons of organization (to avoid confusing different concepts) all of the signal definitions are grouped
together in separate stereotyped «Signal» packages10 depending on their scope. As described in Figure
18, each application high level package, i.e. ProvidedInterface, Core and RequiredInterface, posses its
own signal definition package.

This template of structure proposed a last specific package on the left hand side on the . This package
stereotyped «DomainTypes» is introduced in order to collect all the domain types the analyst could need
to introduce to describe the system requirements. Indeed, very often, the analyst is obliged to make
some design choice to model the requirement. For example, in the speed regulator example, s/he may
need to specify a parameter of an operation with a speed type. In this case, the first reflex of the analyst
may be to say: “Let’s have an integer or a float…”. In our approach, s/he will define a new type in this
package, a Speed type in our case. Therefore s/he does not need to make such design choice if s/he
does not want it. Moreover, it is better such design choices to be avoided during the requirements
analysis phase.

ProvidedInterface

RequiredInterface

Core

 InputSignals

 InternalSignals

 OutputSignals

D
om

ai
nT

yp
es

«d

om
ai

nT
yp

es
»

Figure 18: Generic High-Level Architecture of an AIT-WOODDES Application.

Use of two specific interface packages, stereotyped «ProvidedInterface» and « RequiredInterface », and
the choice of orientations for links between them are intended to ensure clear structuring and
identification of dependencies between the developed system and its environment. Such design is
necessary to facilitate system integration into an existing context and enhance the reusability of the
application analysis models.

Regarding to these specific packages constituent of the template structure we propose, the following
modelling rules apply:

10 A «Signal»n stereotyped package is also depicted via the icon .

AIT-WOODDES Deliverable:

October 2001 M2/CEA/WP1.3/V2.1

Internal Page 28

Modelling rule 3 : A signal-stereotyped package must contain only signal-type elements.

Modelling rule 4 : The package stereotyped «DomainTypes» must only contain model
elements stereotyped «type».

Modelling rule 5 : In the requirements analysis phase, stereotyped packages
« ProvidedInterface » and « RequiredInterface » contain only interface classes.

Remark: during next stages of the development (design, implementation and prototyping), each
interface class must be implemented by a class whose name is the same as that of the interface
class preceded by " I_ ". The provided interface package may not be used by any other system
package.

During this step, some specific classes of the application may identified automatically from the
preliminary analysis data: these are the system-to-environment interface classes, also called interface
classes. By applying the following modelling rule, the analyst populates the two interface packages of
the application in a systematic way. If the tool supporting the method allows it, this step could be
automated.

Modelling rule 6 : Each actor identified in the use case model built during preliminary
requirements analysis results in identification of a corresponding interface class in the model
generated during detailed analysis. All of the classes introduced in this way are interface classes11
(and are therefore either given an "interface" stereotype or depicted as circles with class name labels
(Figure 21)) and are assigned the same names as the actors they refine.

Furthermore, if an actor is stereotyped as « active », the corresponding class is positioned in the
provided interface package. If, on the other hand, it is stereotyped as « passive », it is included in the
required interface package.

Modelling rule 7 : An actor element in the PAM is linked via a dependency link stereotyped
«refine» with its matching interface class in the DAM. Moreover, the direction of the dependency is
from the interface class towards the actor.

In the example of the speed regulating, key concepts for the provided interface package are as follows
(see Figure 21) :

− EngineStarter: interface between the engine starter and the regulation system;

− RegulatorOnOffButton: interface between the regulator on/off button and the speed regulator;

− Accelerator, interface between the accelerator and the speed regulator;

− BrakePedal, interface between the brake pedal and the speed regulator;

The following classes are derived from the use case diagram (Figure 11) for the required interface
package:

11 UML definition : "An interface is a named set of operations that characterize the behavior of an element."

AIT-WOODDES Deliverable:

October 2001 M2/CEA/WP1.3/V2.1

Internal Page 29

− EngineUnit, interface between the regulation system and the engine unit;

− RegulatorDisplay, interface between the regulation system and the regulator display screen;

− Speedometer, interface between the speed regulator and the speedometer.

Engine Unit Speedometer

RegulatorDisplay

ProvidedInterface

 EngineStarter
RegulatorOnOffButton

Brake Pedal
 Accelerator

RequiredInterface

Core

Figure 19: Interface Packages Population.

2.2.2 Activity – “describe structure view”

Structural model description is based on a generic architecture described in subsection Erreur ! Source
du renvoi introuvable. below. As depicted in the Figure 20, this modelling activity refers to eight
iterative steps. But except for the initial definition of application classes, the relative order in which these
steps take place is irrelevant: they are all part of a global, iterative approach aimed at refining the
application structural sub-model. The transition from specification to design is itself a gradual one, since
it involves continuous increments. The specification model is completed with more detailed model
elements including software issues to model how the system realizes what it has to do.

AIT-WOODDES Deliverable:

October 2001 M2/CEA/WP1.3/V2.1

Internal Page 30

 Detailed Requirements Analyst

{until all requirements has been detailed}

Structural Model

 B A

C

Detailed Scenarios

Behavioural Model

PAM

define domain classes
and their relationships

clarify inter-relationship ambiguities

declare active resources

declare shared resources

specify communications

describe services

Figure 20: Activity – the “describe structure view” Activity of the AIT-WOODDES Methodology.

The following paragraphs give a step by step description of the model building process, illustrated by the
speed regulator example. Throughout this presentation, a number of modelling rules are provided to
formalize the approach. In this stage of development, the main contribution of the method is to afford
specialization of certain UML concepts such as "active object", and, again, to formalize UML via the
modelling rules.

2.2.2.1 Step – “define domain classes and their relationships”

For this step, no extensions are introduced there, but instead rules for using existing UML concepts are
providing to the user to help her/him modelling her/his application.

From the dictionary and IRD, three main system core classes – Regulator, ControlEquation and
Speed – are identified in a first analysis. ControlEquation and Speed classes are given special
attention, since these two concepts are prevalent in automated systems and automotive applications
respectively. It thus seems logical to design them for reuse in other applications. One obtains also a fist
draft for the structural submodel of the application:

AIT-WOODDES Deliverable:

October 2001 M2/CEA/WP1.3/V2.1

Internal Page 31

Engine Unit Speedometer

RegulatorDisplay

Regulator

ControlEquation

Speed

ProvidedInterface

 EngineStarter
RegulatorOnOffButton

Brake Pedal
 Accelerator

RequiredInterface

SpeedRegulator

Figure 21: A first list of Classes for the Speed Regulator System.

Once system interface classes and basic core classes have been identified, these classes must be
linked to one another. This is achieved in three steps:

− linking provided interface classes to system core classes;

− linking system core classes to required interface classes;

− interconnecting system core classes.

This work of defining relationships in the application may also respect as much as possible the following
modelling rule:

Modelling rule 8 : Analysis of the dependencies between application concepts takes place in
three steps:

− linking the provided interface package to the core package. Provided interface classes are the
points at which the environment "stimulates" the system, and system core classes used by the
provided interface classes are the points at which the system responds to these stimuli;

− linking the core package to the required interface package. This step serves to specify the points
at which the system acts on its environment;

− interconnecting system core classes.

Because the direction of a class-to-class association impacts both the reusability of that class and the
modularity of the application, orientation choices made in the structural model are of great significance.
Initial analysis of the speed regulator model reveals the following relationships:

a. Links between provided interfaces and system core classes:

There is an association link between the accelerator interface and the regulator (Figure 22), oriented from
the Accelerator to the Regulator class, with a cardinality of 0..1 (meaning that each Accelerator class
instance is associated with a single Regulator instance) (Figure 23).

 Accelerator
« Interface »

Regulator
ur

Regulator
ur

reg

0..1

 Accelerator
« Interface »

Figure 22: Association. Figure 23: Orientation and Cardinality.

AIT-WOODDES Deliverable:

October 2001 M2/CEA/WP1.3/V2.1

Internal Page 32

This orientation of the Accelerator-to-Regulator relationship can be justified as follows:

− If the orientation were Regulator-to-Accelerator (and, in such cases, the accelerator interface would
not recognize the regulator concept), the accelerator interface could not address the regulator to
signal a change in state (e.g. to inform the regulator to interrupt regulation when the driver depresses
the accelerator). Such an architecture could, however, function correctly, if the regulator were
designed to periodically request accelerator status, whether or not the driver is depressing it. The
main drawback of this architecture would be the activity overload induced by periodic verification of
accelerator status, since driver action on the accelerator is only sporadic.

− With an Accelerator-to-Regulator orientation, the accelerator interface can address the regulator to
signal any action by the driver (depressing or releasing the accelerator). In this case, since the
activity is known to be sporadic, and unlike what occurs in the previous scenario, there would not
normally be an overload.

Similar association relationships exist between brake pedal interface and regulator, engine starter
interface and regulator and regulator on/off button and regulator, the preceding remarks also apply to
each of these cases.

b. Links between system core classes and required interface classes are as follows:

The speed regulator makes direct use of the engine unit interface to determine the torque change
required to maintain speed at the setpoint value imposed by the driver. To do so, the Regulator class
has an association link oriented toward the EngineUnit interface class with a cardinality of 1..*. The
choice of direction for this association is guided by modularity considerations. This is because use of a
regulation system only makes sense if the vehicle has an engine unit. The engine unit must, however, be
able to operate without a speed regulator (this device is not (yet) a standard feature of all automotive
vehicles). If this orientation were reversed, i.e. from EngineUnit to Regulator class, the application would
need to allow for EngineUnit classes with and without speed regulators.

 EngineUnit
« Interafce » Regulator

ur

 eng

0..1

 Engine Unit
« Interface » Regulator

ur

reg

0..1

Figure 24: EngineUnit Operating Independently from
Speed Regulateur.

Figure 25: Speed Regulator-Dependent EngineUnit.

Important : Choice of relationship orientations has significant impact on the reusability of the application.
Once two classes are linked by a relationship, whichever class is used by the other is no longer reusable
alone.

Choice of cardinality 1..* can be justified as follows: A Regulator instance must control at least one
power source enabling displacement of the vehicle, i.e. with a minimum cardinality of 1. A vehicle may,
however, have several power sources (hybrid engines). A Regulator instance must therefore be able to
control all power sources of the speed-regulated vehicle, thus requiring a cardinality of 1..*.

The speed regulator also makes direct use of the interface with the display screen to update its status
display (ON, OFF or STDY). The Regulator is thus oriented toward the RegulatorDisplay with a
cardinality of 0..1 (Figure 26). Since the screen is not required for regulator operation, minimum

AIT-WOODDES Deliverable:

October 2001 M2/CEA/WP1.3/V2.1

Internal Page 33

cardinality is 0 and the maximum is 1, to account for the fact that there is no more than one display
screen per regulator.

regD RegulatorDisplay

« Interafce »
Regulator
ur 0..1

Figure 26: Regulator—RegulatorDisplay.

The Speed class makes direct use of the speedometer to acquire actual vehicle speed. This class is
thus oriented toward the Speedometer interface, with a cardinality of 1..* (Figure 27). It seems obvious
that, to operate, such a speed regulation system must be able to acquire this speed value, meaning a
minimum cardinality of 1. It is possible, however, for the system to obtain said data from several sources
and to compute a particular speed on the basis of these acquisitions. It thus requires a maximum
cardinality of * to enable reuse of the class in another application. Note that, in object-oriented modelling,
there is no direct, clearcut relationship between orientation and the direction in which data flows. Here,
for example, data flow from the speed class to the speedometer interface takes place mainly in the
Speedometer-to-Speed (speed value acquisition) direction.

 Speedometer
« Interface » Speed

spdom

1..*

Figure 27: Speed—Speedometer Relationship.

c. Analysis of relationships between system core classes:

The speed regulator controls the speed class for the purpose of initiating updates and uses the speed
value to initialise its own operation. Speed regulation cannot, in fact, be activated, if actual vehicle speed
exceeds a minimum level. There is thus an association relationship, oriented from Regulator to Speed,
with a cardinality of 1 (Figure 28). This orientation enables reuse of the Speed class, which can operate
independently of the regulator. The cardinality requirement results from the fact that the regulator must
know at least one speed value, i.e. actual speed of the vehicle at the time.

Regulator actualSpd

1
Speed

Figure 28: Regulator—Speed Relationship.

The speed regulator is also linked to the control equation by an association relationship oriented from
Regulator to ControlEquation, with a cardinality of 1..* (Figure 29). This orientation accounts for the fact
that the regulator requires the control equation to regulate speed, but that the equation can very well
operate alone and even be used by another class in a system other than that regulating speed.
Cardinality is 1..*, firstly because, to operate, the regulator requires at least one control equation and,
secondly, because this device can use different control equations as a function of operating mode. It may
have different control equations for good weather and rainy weather, for example.

AIT-WOODDES Deliverable:

October 2001 M2/CEA/WP1.3/V2.1

Internal Page 34

Regulator ctrlEq

0..*
ControlEquation

Figure 29: Regulator—ControlEquation Relationship.

The control equation is linked to speed by a relationship oriented from ControlEquation to Speed with a
cardinality of 1 (Figure 30): the equation requires a speed value, but the speed class can function without
the equation (reusability of Speed). Since, to compute its output, the control equation requires only the
actual vehicle speed, the required cardinality is 1.

Speed speed

0..1
ControlEquation

Figure 30: ControlEquation—Speed Relationship.

Global analysis of these links provides the global structural model shown in Figure 31. In this diagram,
the interface classes which, up until now, were distinguished from other classes using the « Interface »
stereotype, now appear as circles labelled with their class names. This new representation is linked to
the specific icon attached to the stereotype. The main advantage of such notation is to simplify the
diagram. But it has the drawback of "hiding" the internal characteristics of the stereotyped class, i.e. its
operations and attributes.

Speedometer

Regulator
ur

ControlEquation

Speed
actualSpeed

Accelerator

0..1 reg

BrakePedal

reg 0..1

ctrlEq

1..*

RegulatorDisplay

EngineUnit

eng
mp

1..*

0..1 regD
1

spd 0..1

0..1 spdom

RegulatorOnOffButton

reg 0..1

EngineStarter

reg 0..1

Figure 31: Global Structural Model of the Speed Regulator with Class Relationships.

2.2.2.2 Step – “clarify interrelationships ambiguities”

The model shown in Figure 32 illustrates a typical interrelationship. In this model, classes A and B both
have a relationship with a same class, C. Class A is linked to class C via roleCA, with a cardinality of
cardRCA; and class B is linked to class C via roleCB, with a cardinality of cardRCB. The problem here is
thus to determine the links likely to exist between one or more C instances known to an instance of A,
via roleCA, and one or more C instances known to an instance of B via roleCB. To answer this question,
there are two possibilities: either there is a relationship between the two associations or no such
relationship exists.

AIT-WOODDES Deliverable:

October 2001 M2/CEA/WP1.3/V2.1

Internal Page 35

roleCA

cardRCA
C

roleCB

cardRCB

A B ?

Figure 32: Interrelationship Constraint between Two Roles.

The simplest situation is the one in which no relationship exists between roleCA and roleCB. This means
that no class A instance shares use of a class C instance with a class B instance. In this case, the
structural model must contain an { xor }-type constraint between the two associations (Figure 33). There
is thus no possible ambiguity in the structural model specification, at least not for this particular point.

roleCA

cardRCA
C

roleCB

cardRCB

A B
{xor}

Figure 33: {xor} Constraint between Two Associations.

Modelling rule 9 : In a class diagram, if two (or more) classes have relationships with a third
and, provided there is no sharing of used class instances by user class instances, associations
linking the user classes with the used class are mutually exclusive. This is reflected in the model by
the implicit presence of a mutually exclusive constraint, {xor}, attached to the associations involved.

To comply with Modelling rule 9 :, it is considered by default, in cases where a class is used by several
other classes, that the "shared" class instances are not actually shared, i.e. that the user instances do
not use the same instances of the shared class. This implies that, in modelling, the {xor} constraint is
automatically inserted by the development tool. In the opposite case, the user places a {=}-type
constraint between the roles pointing to the common instances.

In the second type of situation, a relationship constraint is required between two associations whose
ends point to a same class. The class model specification may then evidence ambiguities (problem
inherent in class diagrams). Based on the model shown in Figure 32, even in a simple case where each
association end has a cardinality of 0..1, several different instantiations of a same class model are
possible.

This means that, to obtain a fully defined model, ambiguities inherent in the class diagram must be
clarified by adding specification elements to the underlying structural model.

One way of settling conflicts arising from shared use of certain application instances is to impose the
number of allowable instances for each class. Modelling of such specifications merely involves
associating the class whose number of instances is to be specified, with itself. The source end of this

AIT-WOODDES Deliverable:

October 2001 M2/CEA/WP1.3/V2.1

Internal Page 36

association is a class property, with a cardinality of *. This end is commonly known as an instance and
its cardinality specifies the number of instances in the class12. Generally speaking, a cardinality of n..m
with n = m and (n,m) (N x N*∝) means that the application has at least n and at most m class
instance(s).

roleCA

cardRCA
C

roleCB

cardRCB

A B
instance
n..m *

Figure 34: Specification of the Allowable Number of Class Instances

This solution nevertheless limits the reuse of classes whose number of instances is a constant. The
model requires that class C be instantiated at least n times and at most m times. Consequently, any
application wishing to use class C will not be able to use more than m instances of that class.

In the speed regulator example, Regulator and ControlEquation are in a class A and B situation with
respect to use of the Speed class. This specification, which consists of imposing a single Speed class
instance, seems reasonable for Regulator and ControlEquation classes (it may preclude coexistence of
two instances in a consistent form). However, the Speed class is typically a generic concept of interest
to other types of applications, for which it could be advantageous to simultaneously make use of one or
more instances without specifying their number. In such cases, the number of instances used should
preferably be a property of the complete set of classes used for the application considered and not of a
single class. The solution is to express constraints on model elements via an invariant attached to the
package containing the set of classes and not directly on each separate class. In this way, the
constraint becomes part of the package context and not of the model element. The structural model
shown in Figure 32 thus reads: Within the scope of the SpeedRegulator package, there is a single
Speed class instance. As a result, all ControlEquation and Regulator instances will make use of the
same speed object.

 Invariant
{Speed.allInstances.size() = 1}

 Speed Regulator

Regulator

ControlEquation

actualSpd
0..1

ctrlEq
1..*

1 speed
OnOff_Reg

StopAuto

OnOff_Reg Speed

Figure 35: Specification of an Instantiation Constraint Attached to a Package.

Since Regulator and ControlEquation classes use a single Speed instance, this solution is suitable for
the case considered here. However, if the structural model includes an additional user class for another
Speed class instance (different from the one used by Regulator and ControlEquation instances), it no

12 The class association also serves to access class C instances, as materialized by the expression

"C::getInstances(i) ", where i ≤ m enables accessing of the i th instance of C.

AIT-WOODDES Deliverable:

October 2001 M2/CEA/WP1.3/V2.1

Internal Page 37

longer suffices to specify an allowable number of Speed class instances. Specification of exactly two
Speed class instances does not, in effect, enable a distinction between the Speed instance used by an
ObstacleDetector instance and that used by Regulator and ControlEquation instances. The solution to
this new problem is to add constraints between the Speed class roles (Figure 36). The first constraint,
{xor}, specifies that a Speed instance cannot be simultaneously linked to a Regulator and an
ObstacleDetector instance. This constraint can also be written in OCL form:

{ ControlEquation.allInstances → forAll(a | Regulator.allInstances →
forAll(b | a.speed → intersection(b.actualSpd) → isEmpty))}.

The next constraint,

{ ControlEquation.allInstances→forAll(a | Regulator.allInstances→forAll(b | a.speed=b.actualSpd))},

specifies that ControlEquation and Regulator instances must share a same Speed instance when they
call on the services of this class.

 Invariant
{Speed.allInstances.size() = 1}

ObstacleDetector

{ xor }

SpeedRegulator

Regulator

ControlEquation

actualSpd
0..1

ctrlEq
1..*

1 speed
OnOff_Reg

StopAuto

OnOff_Reg Speed

{ControlEquation.allInstances→forAll(a|
Regulator.allInstances→forAll(b|

a.speed=b.actualSpd)) }

Figure 36: Interrelationship Constraints.

This can be expressed using another OCL invariant (Figure 37) :

AIT-WOODDES Deliverable:

October 2001 M2/CEA/WP1.3/V2.1

Internal Page 38

ObstacleDetector

SpeedRegulator

Regulator

ControlEquation

actualSpd
0..1

ctrlEq
1..*

1 speed
OnOff_Reg

StopAuto

OnOff_Reg Speed

Invariant
{ Speed.allInstances.size() = 1;

ControlEquation.allInstances->forAll(a |
 Regulator.allInstances->forAll(b |
 a.speed ->intersection(b. actualSpd)->isEmpty))

ControlEquation.allInstances→forAll(a|
Regulator.allInstances→forAll(b|

a.speed=b.actualSpd)) }

Figure 37: Specification of Interrelationship Constraints using OCL Invariants.

Finally, the following modelling rule is aimed at improving the readability of class diagrams:

Modelling rule 10 : In a class diagram, if two classes (or more) have relationships with a third,
and there is a relationship between the associations linking the user classes with the used class, the
names of association ends pointing to that class will be identical.

This rule enables specification of relationships between associations but not of the accompanying
constraints, which must be added as described above.

This is the modelling approach applied in subsequent chapters. It also entails renaming the spd role
(subsequently known as actualSpd) to underscore the fact that a constraint exists between the two
associations. For purposes of simplification, cardinality constraints will not be systematically repeated
on the diagrams shown in subsequent chapters.

Remark: Invariant specifications can be viewed in either of two ways: from a "structural" or an
"implementation" standpoint. In the "structural" view, they serve as constraints to be verified at all times
by the application. Associated logic expressions must therefore be tested during execution of the
application, an error being generated on failure to do so. In the "implementation" approach, they serve to
facilitate implementation, by (as shown here) specifying the number of instances included in a class and
assigning the corresponding roles. This second view is all the more advantageous as model structure
then ensures that the application will comply with these constraints.

2.2.2.3 Step – “describe services”

The last phase in structurally describing an application consists of describing one-by-one the content of
each of its classes, that is, the services (operations) performed by that class and the basic data
(attributes) contained therein. This is precisely the level at which concurrency constraints are stated.

AIT-WOODDES Deliverable:

October 2001 M2/CEA/WP1.3/V2.1

Internal Page 39

For attributes, description includes name and kind (the latter should be: boolean, integer, character
string, floating value, table or aggregation – structure – of these basic types).

In UML, the description of an operation contains its name, the type of return value, if any, the list of its
parameters (specifying, for each: name, type and passing modes – "in", "out" or "inout") and its impact
on object state, which includes two possibilities:

− the operation does not change, even temporarily, the state of the object, i.e. it has no impact, at any
time during execution, on the values of object attributes, those of object roles (references/pointers to
related objects), or those of instances referenced by object roles (this property must be recursive). In
such cases, the status of the current object13 is an implicit parameter of the method operating in
"in"14 mode only;

− the operation can change the value of an object attribute or role or of an instance referenced by the
object roles (albeit temporarily). In this case, the status of the current object is considered to be an
implicit parameter of the method operating in "inout".

Remark: In UML, the impact of executing an operation is modeled via the meta-attribute isQuery of the
Feature metaclass. This is a boolean attribute, which, when false, indicates that execution of the
property leaves the state of the object unchanged; and, when true, that side effects may occur.

The impact of an operation on the state of an object likewise depends on the behaviour model of the
application and, more specifically on the control automatons of the class whose object is instantiated.
Any operation defined in an object behaviour automaton as capable of changing object status, must be
considered as also impacting an implicit attribute of that object (i.e. its state) and thus should be
declared as an "inout" parameter. It sometimes happens that an operation initially believed to leave the
object state unchanged is redefined following specification of class control automatons as changing it.

Furthermore, detailed specification of class content requires definition of the accessibility statuses of its
various members from objects other than the current instance. Three possible accessibility
classifications – "public", "protected" and "private" – are thus assigned to class members:

Take, for example, the Speed class, whose specification contains the following attribute:

− value: This attribute serves to store the last acquired speed value. It is the "integer" type with, by
default, a "private"-type accessibility (symbolized by an "–" placed in front of the attribute name).

− … and the following operations:

− starting speed acquisition: name startAcquisition, no output parameters or return value. This
operation consists of applying the various parameters that enable data acquisition. It is wise to
consider it as modifying the object or its roles. It is thus assigned "inout" status. Since it must be
accessible for activation from outside the object, it is classified as a "public" method (symbolized by
a " + " preceding the name of the method).

13 The term "current object" designates the instance to which the method being specified will be applied when
said method is called. It is the object identified by the keyword "this" in C++ and "self " in SmallTalk.
14 Note that, in most languages, this status can only be verified if it is also assumed that the current instance
was declared to be a constant. Compliance with this specification at the implementation stage requires in-
depth analysis by the developer under his full responsibility.

AIT-WOODDES Deliverable:

October 2001 M2/CEA/WP1.3/V2.1

Internal Page 40

− stopping speed acquisition: name stopAcquisition, no output parameters, no return value. This
method may not induce changes in the values of object attributes or roles. While "in" status could be
envisaged, as will be indicated in the control automaton of the class defined for the behaviour model,
this method results in a change in object state and must therefore be considered as modifying an
implicit object attribute (its state). It is thus assigned "inout " status and, as it requires activation from
outside the object, is also classified "public".

− aquiring speed value at the Speedometer interface: name acquireSpeed, no parameters, no return
value. This operation changes the value of the value attribute and is thus assigned "inout" status.
There are two choices for accessibility:

− either considering this operation as always activated by the object's startAcquisition operation or by
signals or by automatic transitions described in the object triggering behaviour diagram (see section
0). In this case, the operation must be declared with "protected" status (symbolized by an " # "
preceding the name of the method).

− or considering it as also accessible for activation from outside the object, via any other object using
the Speed class. Its status must then be "public".

For the moment, the first solution has been selected, but promotion to a higher accessibility category
may be necessary later.

− providing the acquired vehicle speed value (value attribute): name giveSpeed, no input or output
parameters, but an "integer"-type return value15. This method does not cause change in object
attribute or role values. It is thus assigned "in" status and must be accessible from the outside for
activation by other objects, i.e. "public".

A closeup of the Speed class structural diagram shows the following (Figure 38) :

 « RealTimeObject »
Speed

− value: integer

acquireSpeed()
+ giveSpeed():integer
+ startAcquisition()
+ stopAcquisition()

Integer-Type Private Attribute
privé

Operation with Return Value

Public Operation

Protected Operation

 Speedometer

- spdom0..1

Public Role

Figure 38: Detailed Structural Model of the Speed Class

Roles are structural characteristics of a class whose accessibility is the same as the degree of visibility
assigned to a relationship. Role Spdom is a "protected" structural characteristic (references) of the
Speed class.

Conventional practice calls for attributes to be used (for reading or changing their values) only where
access is enabled in the form of specific read and/or write operations by the relevant class. For this
reason, it has been decided to specify the value attribute as "private" (accessible inside the class only),

15 An equivalent solution would be to specify the method with an output parameter, but no return value.
However, there is a slight difference in the impact of these two approaches on the resulting communication
mode (see subsection 2.2.2.3), which is examined at a later stage in this document.

AIT-WOODDES Deliverable:

October 2001 M2/CEA/WP1.3/V2.1

Internal Page 41

then to always provide public access in either read mode, or, where the attribute value may be changed
by another user object, in write mode. This enables the Real Time Object to perform concurrency control
for attribute access when these operations are invoked.

2.2.2.4 Step – “specify communications”

In UML, messages may be sent in either of two forms – as operation calls or as signals:

− an operation call explicitly activates a point-to-point communication between a sender and a receiver.
It therefore requires a structural link oriented from the sender to the receiver;

− if the message is conveyed by a signal, the activated communication is asynchronous. To generate a
signal, an object (the sender) must perform a specific action, a SendAction-type action.

Operation-based communication

Generally speaking, object oriented application objects communicate by exchanging operation-based
messages. Moreover, communication paradigm is based on the asynchronous communication principle.
It means that once the message is sent, the sender immediately continues execution, without waiting for
sent message treatment (Figure 39).

 Message Reception

reg :
Regulateur

Active resource1
1

spd:
Speed

Active resource2
 Message Sending

Continuing execution
 Start of Execution

 Parallel Execution

spd

startAcquisition

Figure 39: Asynchronous Communication.

However, this type of communication is only possible where called services have neither return values nor
output parameters, thus limiting communication to unilateral exchanges. To lessen this constraint, the
Real Time Object paradigm proposes an extension to this scheme, which has been baptized
asynchronous communication with reply or delayed synchronous communication. In this approach, while
the basic mechanism is the same to enable maximum parallelism, it is supplemented with
synchronization points between the caller's thread of execution and the thread handling the sent
message. This enables the sender to receive data return from the receiver. The synchronization
mechanism is realized by a specific system object: a reply box shared by sender and receiver. An
example of its operation is given in Figure 40, for a giveSpeed message (with output parameter) sent by
a Regulator instance to a Speed-type object. Called operations may have several output parameters and
a return value. A reply box is then provided for each output parameter and, as needed, for the return
value.

AIT-WOODDES Deliverable:

October 2001 M2/CEA/WP1.3/V2.1

Internal Page 42

Message reception

reg :
Regulator

Active resource 1
spd:

Speed

Active resource 2

Start of execution

Parallel execution Request for
reply Reply Box

Reply sent
value

Reply Box
Creation

Extraction
of value

?

Reply Box

reply

Continuing parallel
execution

Continuing parallel
execution

Parallel
execution

spd

giveSpeed

Figure 40: Asynchronous Communication with Reply.

Note that, when the called operation has a return value, this value is not dispatched until the operation is
completed and the caller's thread is interrupted to await this return, immediately after the message is
sent. This thread remains on standby throughout execution of the called operation. Message sending
with return values thus ensures strong synchronization of sender and receiver. This type of
communication is illustrated by Figure 18, where, instead of a return value, the giveSpeed operation
provides a speed value via the appropriate output parameter.

 Message reception

reg :
Regulator

Active resource 1
spd:

Speed

Active resource 2
Start of execution

Reply Box
Dispatching of
return value value Extraction

of value

?

Reply Box
réponse

reply

spd

giveSpeed

Request for
return value

Figure 41: Strong Synchronous Communication.

Except for the synchronizations imposed by information exchanges between the message sender and
the thread of execution in charge of treating it, It is possible to specify in sending messages (i.e. within
the scope of the application's instantiation and behaviour models) purely logical synchronization
constraints. There are two alternatives: strong synchronization, which obliges the sender to wait for the
end of message treatment before continuing execution; and loose synchronization, in which the sender
need await only the start of message treatment (to ensure that the receiving object was in a state
compatible with such treatment) before it continues execution. In the model, this is realized via a
synchronization tag associated with a loose or strong value.

In UML, class specification in the structural model does not require addition of data to the reference
model to specify communications protocols. Indeed, the latter are implicit in the prototype for Real Time
Object operations (refer to section “Declaring Concurrency Constraints for Operations” on p. 50). The
following modelling rule defines this point.

AIT-WOODDES Deliverable:

October 2001 M2/CEA/WP1.3/V2.1

Internal Page 43

Modelling rule 11 : The mode of communication generated by an operation call is implicitly
determined by the called operation signature, according to whichever of the following rules applies:

− by default, an operation having no return value or output parameter ("out" or "inout") is invoked in
asynchronous communication mode;

− by default, an operation with output parameters ("out" or "inout") but no return value will be invoked in
delayed synchronous mode (asynchronous communication with reply), on condition that its output
parameters are needed by the caller: otherwise, case 1 will apply;

− an operation having a return value will be invoked in strong synchronous mode, on condition that its
return value is needed by the caller; otherwise, cases 1 and 2 apply.

The table below is a recap of the various communication schemes enabled in the approach,
together with typical specifications for the operations corresponding to each.

Case Return
Value

Output
Parameter(s)

Call Mode Execution Diagram Example of UML
Operation Prototype

1. NO NO asynchronous

startAcquisition ()

2. NO YES
asynchronous

with reply

giveSpeed (> sp)

3. YES YES/NO strong
synchronous

giveSpeed () : integer

Table 6: Communication Schemes and Operation Prototypes.

Signal-based communication

In UML, messages may be seen in either of two forms – as operation-based but also as signal-based:

− as seen in the previous section, an operation call explicitly activates a point-to-point communication
between a sender and a receiver. It therefore requires a structural link oriented from the sender to the
receiver;

− in the case of a message is conveyed by a signal, the activated communication is asynchronous and
may also present different characteristics than operation-based message. To generate a signal, an
object (the sender) must perform a specific kind of action defined as a SendAction-type action.

Contrary to other UML-based approaches using this signal-based concept, in the AIT-WOODDES
method, signal-based communication relies on the principle that the signal receiver is unknown to its
sender and the sender is likewise unknown to the receiver. Sender and receiver do not, in fact, normally
need to know each other (i.e. no structural or operational link is required between sender and receiver).
The section 4 describes a specific design pattern enabling models using such signal-type
communication mode to be executable.

AIT-WOODDES Deliverable:

October 2001 M2/CEA/WP1.3/V2.1

Internal Page 44

Moreover, the behaviour of an object following signal reception is specified in a state machine. If the
receiver object state so permits, signal reception can therefore cause firing of a state machine transition,
resulting in the execution of an action sequence associated with this transition.

Modelling rule 12 : Signal-based communication may be used for broadcast-type asynchronous
communication. It means that in this mode, the object sending the signal does not know the signal
targets and the receiver object or objects do not know the sender. Furthermore, this communication
mode allow a same message to transfer to several targets in same time.

Practically speaking, the signal-type communication mode is useful in three types of situation:

− to permit communication between objects for which the designer does not wish to provide structural
dependency links;

− where an object O1 needs to react to a particular state change in another object O2, but without
confining all O1 activity to O2 state surveillance (especially if the anticipated O2 state change is of a
sporadic nature) ;

− where several objects need to be able to react, albeit differently, to a same event.

Such situations are particularly pertinent to modelling those parts of a system where reactivity is vital.

According to the UML approach, all signals are typed by the class that characterizes their properties.
The class specifying the signal is assigned a « Signal » stereotype and may own attributes that serve to
define signal parameters.

It is possible for an object to send a signal without assigning values to all of its attributes. But an object
receiving a signal may be led to use any one of that signal's parameters, regardless of its sender. Since
the receiver has no knowledge of the sender nor, therefore, of the manner in which the signal was sent,
assignment of values to all signal parameters is a necessity. The following modelling rule has been
devised to meet this requirement:

Modelling rule 13 : All attributes specifying the parameters of a signal must have a default
value.

In this way, if an object sends a signal without specifying values for all parameters, the receiver objects
will nevertheless receive a value (if only by default) for each..

In UML, a signal has no operations and it is involved in no association relationships other than
inheritance (from another, parent signal). This means that each signal class is itself part of a more or
less generic signal hierarchy and that its characteristics are refined in the inheritance process.

In the example studied here, one could introduce both following types of signals in the model:

− the regulation system stop/start request, which is attached to the OnOff_Reg signal;

− the automobile engine stop request, which is attached to the StopCar signal.

These two requests can be interpreted in two ways:

AIT-WOODDES Deliverable:

October 2001 M2/CEA/WP1.3/V2.1

Internal Page 45

− either by a set of operation calls from EngineStarter and RegulatorOnOffButton to the relevant
objects, on StopCar and OnOff_Reg respectively. In such cases, these two classes must be able to
identify and access the objects concerned. If the application and the relevant objects were to be
modified, message sending would likewise need to be redefined.

− or by a signal internal to the application and automatically broadcast to all relevant objects without
need for EngineStarter and RegulatorOnOffButton classes to make particular specifications.

The second solution affords a more modular design, requiring only that affected classes be able to
receive the signal. The engine starter and regulator on/off button interfaces then no longer need to know
the list of relevant objects or how to access it. This is the solution selected for the application described
here.

The complete set of these specifications provides a structural model for the following signals (Figure 42) :

OnOff_Reg
« Signal »

Stop_Car
« Signal »

InputSignals

Figure 42: Signal Definition.

Signal Assignment to Classes for Sending and Receiving

The second step consists of modelling the signal "receptiveness" of various application classes and
identifying potential sources of signals.

The first rule, described above as the Modelling rule 14 :and relative to this point is that any use, either in
reception or in sending, of a signal has to declare before in the signal package of the application.

Modelling rule 14 : A class may only receive a given type of signal or specify that it can send
such a signal instance if that type of signal was previously defined in the application's signal
package.

As already seen above, in the speed regulator system, the engine starter informs the regulator that the
engine has been halted and requests that speed regulation likewise be stopped. To do so, and to ensure
engine starter independence from the regulation system, a signal-type message is used. An association
relationship from the Regulator to the EngineStarter class would of course also preserve starter
independence from the speed control function. In the second case, however, regulator instances would
need to periodically "scan" the state of the starter to see whether or not the vehicle is running. Since the
time constraint associated with system response to an engine halt is 100 milliseconds, the resulting
scan frequency would need to be at least 10 Hz. Such monitoring of a purely asynchronous phenomenon
would unnecessarily burden the system. It would be more economical to specify that the EngineStarter
class is capable of generating StopAuto-type signals (Figure 43) and that the Regulator class is
receptive to them (Figure 44). In the same way, and for the same reasons, the RegulatorOnOffButton
class could communicate with the system via an OnOff_Reg signal to which the Regulator class is also
receptive.

AIT-WOODDES Deliverable:

October 2001 M2/CEA/WP1.3/V2.1

Internal Page 46

EngineStarter
« Interface »

StopCar

RegulatorOnOffButton
« Interface »

OnffReg

OnOff_Reg
Regulator

StopCar

Figure 43: Signal Sending Specification. Figure 44: Signal Receiving Specification.

Specification of all signal sending and receiving operations supplements the global structural
diagram for the speed regulator as follows (Figure 45):

 ProvidedInterface

 Speed Regulator

RequiredInterface

Brake Pedal

Accelerator

Regulator

Speed

 Speedometer

ControlEq. 0..1

actualSpeed
0..1

ctrlEq
1..* reg 0..1

1 speed

spdom 0..1

RegulatorDisplay

0..1 regD
Engine Unit

1..* eng

reg

OnOff_Reg

StopCar

OnOff_Reg

Regulator OnOffButton

OnOff_Reg EngineStarter

StopCar

 InputSignals

Figure 45: Signal—Class Assignments.

The specific responses of classes to signal reception are described in the chapter on the behaviour
model, by defining class triggering automatons. Class signal outputs are likewise specified in the
behaviour model (triggering automatons and behaviour diagrams for methods or scenarios).

2.2.2.5 Step – “declare active resources”

In the approach, concurrency is handled by specification of Real Time Objects [13] whose operation is
similar to that of the Active Objects defined in concurrent programming languages such as [14], [15] and
[16]. A real time object is made up of a mailbox that receives requests sent to the object and a
concurrency and state controller, which manages messages as a function of its own state and the
concurrency constraints associated with their execution. A real time object can be seen as a real time

AIT-WOODDES Deliverable:

October 2001 M2/CEA/WP1.3/V2.1

Internal Page 47

computer with its own real time, multitasking operating system (see [3] for more detail on this language
concept).

 aRealTimeObject

External
Interface

Control and Message
Management Structure
ontrôle &

Messages

AttributesOperation
code

O
peration_1

O
peration_2

O
peration_1

Messages

Operation_1()
Operation_2()
…

Figure 46: Outline of the Real-Time Object concept.

The real time object concept thus enables specification of two types of parallelism – intra-object and
inter-object. Intra-object parallelism corresponds to a situation in which only those operations relating to
a same object (in read mode only) may be executed in parallel. This view is specified in the structural
model by stereotyping operations (see subsection “Declaring Concurrency Constraints for Operations" in
p.50). The inter-object version calls for parallel execution of two or more objects. This view is specified by
declaration of the affected objects as real time objects, i.e. by adding the « RealTimeObject » stereotype
to the corresponding class in the structural diagram. Moreover, as an active object in UML, a real-time
object class is also shown as a rectangle with a heavy border.

The following types of objects may be eligible for real time stereotyping:

− objects triggering autonomous treatments (tasks);

− objects receiving signals;

− objects receiving asynchronous operation calls;

− objects acquiring data from the environment;

− objects monitoring the (sporadic or periodic) behaviour of the system environment.

Here again, the potential need for declaring class receptivity to signals should be considered. Response
semantics implicitly call for an object to react as quickly as possible to a signal, independently of the
rest of the application. While this behaviour is perfectly suited to Real Time Objects, a passive object-
type receiver offers no inherent signal treatment resources. Its response must be supported at system
level and may require concurrency control to preclude conflicts with other potential users while it is
treating the signal. Then again, Real Time Object philosophy tends to consider a passive object as a
resource to be managed by real time objects rather than as an autonomous entity reacting separately
from the objects that manage it. It therefore seems logical to entrust the Real Time Objects in charge of
managing passive objects with the additional task of managing the latter's responses to signals. This
alleviates the need for declaring passive object classes as "signal receptive".

AIT-WOODDES Deliverable:

October 2001 M2/CEA/WP1.3/V2.1

Internal Page 48

Modelling rule 15 : Only those classes stereotyped as « RealTimeObject » are capable of
managing signal receptions. If a class receives a signal but does not have real time object status, it
will be considered as a modelling error.

After structural analysis of this example, two concepts seem likely candidates for Real Time Object
status: regulator (Regulator), and speed (Speed). The Regulator class meets two of the abovementioned
criteria, i.e. it is declared "receptive" to signals and, based on project specifications, it incorporates
triggering of autonomous treatment (specifically a setpoint calculation task) while monitoring changes in
controlled environment state (detection of braking, acceleration, etc.). To specify it as such, it is
assigned a « RealTimeObject » status. The Speed class meets criterion 2 (receptivity to signals), but
likewise satisfies the fourth criterion. This class is responsible for acquiring actual vehicle speed at a rate
of 2 Hz, independently of any other action in the system. It is therefore also given real time object status.
By contrast, the ControlEquation class does not meet any of these criteria and thus remains a passive
object.

Selection of classes ensuring autonomous treatments or tasks in the usual multitasking applications
(real time objects) then takes place in the model by assigning the « RealTimeObject » stereotype to the
classes of interest (Figure 47).

 SpeedRegulator

« RealTimeObject»
Regulator

ControlEquation
0..1

 actualSpd
0..1

ctrlEq
1..* reg 0..1

1 speed

reg

OnOff_Reg

 StopCar

OnOff_Reg
« RealTimeObject »

Speed

Brake Pedal

Accelerator

RegulatorOnOffButton

OnOff_Reg EngineStarter

StopCar

Speedometer

Spdom 0..1

RegulatorDisplay

0..1 regD
Engine Unit

1..* eng

ProvidedInterface

RequiredInterface

 InputSignals

Figure 47: Specification of Real Time Objects for an Application.

It should be emphasized that the Real Time Object model developed in [[13] places no constraints on
relationships between real time objects and other objects or on the types of communication used.
Programming and execution models proposed by the method thus ensure complete real time object
versatility. One significant result is that it is always possible to modify the status of a class declared as

AIT-WOODDES Deliverable:

October 2001 M2/CEA/WP1.3/V2.1

Internal Page 49

a Real Time Object support by removing its «RealTimeObject» stereotype, without causing impact to
the structural model.

In this initial version of the method, the ControlEquation class was not selected as a potential Real Time
Object support. Should this alternative become attractive at a later stage, the «RealTimeObject»
stereotype could simply be added to the class whose realization characteristics are to be modified,
along with specification of the corresponding usage constraints. These measures would not in any way
jeopardize the rest of the structural model.

Remark: It should also be noted that Real Time Object Class declaration stereotypes only label these
classes as potential sources of Real Time Objects. Specification of the class instances that actually
become Real Time Objects takes place in the instantiation model. This enables a same class to serve,
where appropriate, as both a real time object and an ordinary passive object support.

Warning: When assigned to a class in the structural model, this stereotype is not simply a redundant
commentary with respect to the implementation model. To satisfy modularity and reusability objectives,
the approach (like most other object-oriented methods) requires that the definition and realization of a
class be kept independent of the classes that use it. A given class will not (and must not), therefore,
have knowledge of its users' roles, nor of the implementation model for the application using it. Any
action imposing such knowledge during specification or realization of that class would result in loss of
modularity. A mere declaration of Real Time Object instances in the implementation model does not
(and must not) enable specification and realization of the Regulator class as a Real-Time Object support.
The application designer thus needs to add the «RealTimeObject» stereotype to any class he wants to
be realized as a Real Time Object support.

Complete specification of a class declared as a potential Real Time Object support requires detailed
specification of concurrency constraints for the various treatments potentially performed in parallel by the
object, to ensure consistent use of its data.

The purpose of concurrency constraints specification is to tell the Real Time Object when treatments
must be serialized to maintain consistency between object states and attributes, as well as between
instances referenced by the object roles.

Recap of the Concurrency Issues

For manipulation of parallel systems where several active resource may simultaneously need to use a
same passive resource, a strategy is required to manage concurrent access to that resource. In terms of
method, this means expressing management constraints for the various resources in such a way that
they can be used optimally in implementing the application. In our approach, resource management
mechanisms and algorithms are imposed by the Real Time Object execution model [13], and the
developer has no direct means of modifying them. This guarantees the most uniform and clearest
possible Real Time Object operating semantics from one application to another.

A distinction is often made between hardware resources, such as processors, and data structures. For
hardware, the concurrent usage problem is dealt with in the process of scheduling tasks as a function of
real time application constraints (deadlines, priorities, etc.).

For data structures, there are typically two types of access:

AIT-WOODDES Deliverable:

October 2001 M2/CEA/WP1.3/V2.1

Internal Page 50

− access that has no impact whatsoever on the state of the resource. This is known as read only
access;

− access that may modify the state of the resource. This is known as write access.

A usage conflict arises for a resource when that resource is required simultaneously by two threads of
execution and at least one of them is likely to use it in write access mode. In an object model context,
the resource is represented and encapsulated by an object. Obviously this concerns both passive
objects and Real Time Objects, so that the notion of Protected Passive Object described above can be
manipulated in the model. There is said to be conflict in accessing the resource when two objects16
(whether passive or real time) simultaneously send a treatment request (message) to the same object
(resource) or when a same Real Time Object simultaneously sends two treatment requests to a same
object (it should be remembered that the model authorizes internal parallelism in a Real Time Object).
This situation is illustrated in Figure 48.

spd :
Speed

Thr.l
1

Thr.2

reg :
Regulator

Thr. of E
xecution 2

spd

startAcquisition

contreq :
Control Equation

Th
r.

 o
f E

xe
cu

tio
n

1

spdt

give Speed

Figure 48: Parallel Access to a Same Resource.

To avoid parallel accessing of objects when one of these accesses is likely to cause changes, it is
necessary to specify whether the object is accessible in read only or in write mode. Since the type of
access enabled is fully dependent on the type of operation involved in using the object (in the example
given here, giveSpeed and startAcquisition operations respectively), concurrency constraints has to be
specified at the structural model level, on an operation by operation basis, for each affected class. This
means that all executions of a given operation will be considered to have the same concurrency
constraints. To guarantee object consistency, the developer must therefore account for the worst case
execution scenario: a single case where an operation accesses the object in write mode is enough to
require specification of write access for that object. Conversely, before concluding that read only access
is enough, the developer must verify that this is true in all cases. These measures apply to both Real
Time Object and Protected Passive Object support classes, i.e. those performing concurrency control
on received service requests.

Declaring Concurrency Constraints for Operations

Unlike the UML active object concept, which is dispensed from concurrency processing by serialization
treatments (as a result of the "Run-To-Completion" hypothesis of execution models for UML state
machines, a real time object is a multitask model that requires concurrency management to execute
object operations. Since UML semantics are not suited to this model, a new tagged value,
{concurrencyMode}, is introduced, with the following possibilities: read, write and parallel (see [3]).

16 This problem is not caused by the type of object per se. In the case of passive objects, it occurs when such

objects require the resources of other, real time objects for execution.

AIT-WOODDES Deliverable:

October 2001 M2/CEA/WP1.3/V2.1

Internal Page 51

By default, it is considered that all Real Time Object or Protected Passive Object operations are likely to
modify the state of an object and must be serialized. This is equivalent to attaching the tagged value {
concurrencyMode=write } to all the operations of that object. It is important to notice that in this case, the
execution behaviour of an real-time object is similar to this one of an active object as defined in UML, i.e.
only one message at a time.

Where an operation uses object data (limited to state, attributes or roles alone) in a read only mode, it
can be executed in parallel with any other object operation that does itself use the object in this same
mode. The designer then attaches to it the tagged value { concurrencyMode=read }.

When an operation does not make use of any object data (state, attributes or roles), it can be executed
in parallel with any other operation provided by that object (including itself). The designer can then assign
it a tagged value { concurrencyMode=parallel } dispensing it from concurrency constraints. A call to a
method with this specification results in execution of the associated operation without concurrency
processing.

In some special cases, even where an operation does not fully comply with these requirements, it can
also be assigned this characteristic, knowing that, in actual practice, there is no risk of concurrency
problems occurring. In such cases, the viewpoint considered is that of the class taken separately and
not that of an operation's specific use in the application. Otherwise, said operation could not be reused in
other contexts as yet unknown to the designer.

Modelling rule 16 : An operation owns three concurrency modes specified via the tagged value
concurrencyMode , with the following possibilities:

− write, the operation may use object attributes or roles in write mode;

− read, it may only use these attributes or roles in read mode;

− parallel, it uses neither roles nor attributes.

Take the previously mentioned example of Speed class. The concurrency constraints set for its various
methods are as follows:

− startAcquisition, stopAcquisition and acquireSpeed operations induce a change in object state. They
thus use a write access to the object and are tagged { concurrencyMode = write };

− the giveSpeed value only returns the value of the object's value attribute. It has read only access and
is therefore tagged { concurrencyMode = read };

− finally, the Speed class may be enriched with a convertSpeed operation. This operation is intended
only to convert a speed value in km/h, received as an argument, to a speed value in m/s, dispatched
as a return value. It accesses none of the object attributes either in read only or write mode and may
thus be executed at any time without involving concurrency conflicts on the targeted object. Its
tagged value is { concurrencyMode=parallel }.

The resulting Speed class specification is therefore (Figure 49) :

AIT-WOODDES Deliverable:

October 2001 M2/CEA/WP1.3/V2.1

Internal Page 52

 « RealTimeObject »

- value: integer

 Speedometer

- spdom
0..1

Speed

acquireSpeed() {concurrencyMode=write}
+ giveSpeed():integer {concurrencyMode=read}
+ startAcquisition() {concurrencyMode=write}
+ stopAcquisition() {concurrencyMode=write}
+ convertSpeed (sp) :integer {concurrencyMode=parallel}

Figure 49: Concurrency Constraint Specification for a Real Time Object.

Remark: There is no general algorithm for C++ program code analysis that is capable of determining
with absolute certainty whether or not a given method will perform write operations on a given object.17
More specifically, the "isQuery=true" status of an UML (or the equivalent, i.e."const" for C++) can only
guarantee that modification to the object be limited to a single situation, i.e. that of the object itself
declared as a constant. This is rarely the case for a Real Time Object… The designer must therefore
verify the relevance of concurrency specifications through precise analysis of the application code.

Deadlocks

The concurrency management protocol previously presented is the "1 writer/ N readers" type in which the
managed resource is the set of data represented by the object, i.e. its state, the values of its attributes
and roles and the values of instances referenced by its roles. When an operation accessing the object in
write mode executes, it reserves the object (resource) exclusively for its own use. Any other operation
requiring use of that resource (whether in read or write mode) is then placed on standby until completion
of the writing operation. If concurrency constraints are correctly expressed, this protocol guarantees that
the object will remain in a consistent state. However, this protocol may sometimes lead to situations of
deadlock. A typical such case is that where the real time object sends itself a message to enable
realization of another treatment requested of it. Take the example of Speed class operation
startAcquisition. Its main objective is to initialise the procedure for acquiring actual speed values.
However, calling acquireSpeed, once this initialisation has taken place, may be considered as a second
initial speed acquisition request. Since both operations access the object in write mode, they are
serialized. On commencement of startAcquisition, the operation is given access to the object in write
mode and, consequently, is prohibited from executing any other object operation. After this initialisation,
when startAcquisition requests execution of acquireSpeed to update speed value, the object sends itself
a message that cannot be treated for as long as startAcquisition is executing. If, on the other hand,
startAcquisition waits for completion of acquireSpeed before it terminates the procedure and frees
access to the object, the situation can be said to be deadlocked.

The model for Real Time Object programming proposed here offers two mechanisms for preventing
deadlocks:

− asynchronous message sending that frees the caller and alleviates the need for him to wait for
completion of a treatment. This is the solution required for the above example. Asynchronous
messaging will be discussed in subsection 1.8.

17 This is true, in particular, where the program enables dyanmic address manipulation, using pointers, for
example.

AIT-WOODDES Deliverable:

October 2001 M2/CEA/WP1.3/V2.1

Internal Page 53

− concurrency control "freeze" capability for well defined situations where it is possible to consider
treatments previously considered independent of each other, as parts of a same nesting operation
(notion of transaction internal to an object). In this way, these various treatments could be executed
without mutual concurrency control. This also applies in the abovementioned example, where the call
by startAcquisition to the acquireSpeed operation could be seen as a standard call to an
acquireSpeed subroutine capable of executing sequentially in the same thread of execution as that of
the containing operation startAcquisition. Note that the latter case is only useful in managing models
in which the designer provides a detailed description of application functions and, seeks, for example,
to reduce sizes of critical sections induced by concurrency constraints. This solution is thus more
appropriate for a detailed real time design model or a prototype analysis model.

Class Attribute Management

Class structural features (attributes or roles whose scope is the class) are characteristics shared by all
the instances of a class. This is the only authorized data sharing mode between different instances. It
typically enables storage of all existing instances and gives access to all of them. Because two real time
object-type instances of a same class may seek to simultaneously use a same member of that class,
this type of characteristic must be integrated into concurrency control but cannot be simply attached to
the integrity of the instance supporting the treatment, since it concerns all existing instances.

Attachment of specific concurrency control to class members is thus necessary to enable detection by
the Real Time Object of cases where these members are already reserved by another Real Time Object.
From the specification standpoint, no specific declaration is required for a class possessing class
members. The designer must simply remember to include them in his impact analysis of treatments
performed by operations on the object concerned: if an operation modifies the value of a class member, it
is considered to access this member (or, more globally, the object) in write mode.

Class operations18 must also own the specification of their concurrency constraints. However, these
operations are only designed to use class members (attributes or roles). For this reason, it is usually
easier to analyze their impact.

2.2.2.6 Step – “declare shared resources”

This activity in modelling is likewise concerned with objects that are likely to be used in parallel by
several real-time objects. When the objects used are themselves Real Time Objects, their internal
concurrency control guarantees the consistency of data encapsulated from one to another. When the
object is a passive one, however, it must be given internal concurrency control capability to preclude two
parallel user threads from becoming entangled and creating inconsistencies in object attribute values
(Figure 50). Said object must then be defined as a Protected Passive Object.

18 These class methods can be called and executed independently of a specific class instance. In a way,
they can be considered as global functions whose visibility is limited to the context of the encapsulating class.

AIT-WOODDES Deliverable:

October 2001 M2/CEA/WP1.3/V2.1

Internal Page 54

RTO2
PPO

RTO1

RTOx : Real-Time Object x
PPO : Protected Passive Object

Figure 50: Use of a Protected Passive Object.

Such type of object is declared through attachment of the « ProtectedPassiveObject » stereotype to a
class. In such cases, the model assumes that, at the time of realization, an internal concurrency control
mechanism (e.g. mutual exclusion of various object method executions, 1 writer/N reader-type protocol,
etc.) is attached to said object type. This mechanism ensures consistency of information encapsulated
by the protected passive objects in all cases.

Remark: In the same way as for real time objects, it should be noted that Protected Passive Object
stereotyping of classes only labels them as potential sources of protected passive objects. Specification
of the class instances that actually become Protected Passive Objects takes place in the instantiation
model. Here again, this enables a same class to serve, where appropriate, as both a protected passive
object and an ordinary passive object support.

As was the case for real time objects, this annotation is likewise required at the class level to enable
specification of classes and their realization, independently of the particular use being considered here.

Remark: It should be emphasized that association of concurrency control with a passive object, via the
« ProtectedPassiveObject » stereotype, has significant impact on implementation (size of memory,
execution time). For this reason, such control should not be systematically associated with all passive
object instances in the application. Even if this choice is guided by application model analysis tools, the
complexity of the problem (exponential logic, general case undecidability) means, for all intents and
purposes, that the developer is himself responsible for choosing which objects are protected. The fact
that an instance can only be used by a single real time object instance may lead to the conclusion that
concurrency control is unnecessary. This may not be true, however, since, according to the proposed
Real Time Object model [17], a same real time object can support parallel execution of more than one of
its own operations, thereby itself inducing conflicts in access to any one of its roles, if that particular
usage has not been fully integrated into its concurrency constraints (see subsection 1.7).

The existence of more than one access path from different real time objects to a same passive object
implies risk of conflict. However, the implication is a potential one, since the structural model is a class
model and, if conflict occurs, it does so between objects (class instances). In the class model example
shown in Figure 51, there is risk of conflict for access to passive object PPO. The first solution to this
problem is to use the concept described above, i.e. to add to the PPO class a
« ProtectedPassiveObject » stereotype. In this way, any PPO instance will become capable of
managing potential conflicts created by simultaneous calls from real time object class instances RTO1,
and RTO2. The advantage of this solution is that it is valid for any implementation of the structural model.
The drawback is that, even where the application resulting from implementation of this model does not

AIT-WOODDES Deliverable:

October 2001 M2/CEA/WP1.3/V2.1

Internal Page 55

generate conflict (i.e. where RTO1 and RTO2 do not use the same PPO instance), a PPO instance
remains a protected passive object. This solution involves additional expense (in terms of generated code
and execution time). The second solution to the problem of managing concurrent accesses to a same
shared resource relies on a finer analysis of the roles played by a same passive object (the shared
resource) with regard to various other objects. If the two roles role1 androle2 do not reference the same
PPO, there will be no conflict in access.

 POrole1POrole2
PO

1 1

 "RealTimeObject"
OA1

 "RealTimeObject"
OA2

Figure 51: Use of Shared Resources.

2.2.2.7 Summary

This section described various aspects of the method for building the structural sub-model of an
application. This sub-model is based on a generic architecture intended to permit clear identification and
suitable structuring of the various interfaces between the system and its environment. Regaring other OO
approach dedicated to embedded system development, the points highlighted in this chapter were the
following:

− clarification of UML signal-based communication ;

− extension of UML active object concepts to real time (multitasking) objects;

− introduction of class specialization based on a « ProtectedPassiveObject » stereotype to enable
modelling of shared resources;

− concurrency management for real time objects;

− impact of specifying Real Time Object class operations on inter-object communication models

2.2.3 Activity – “describe behavioural view”

To describe the behavioural aspect of an application, UML proposes, among others, the use of so-called
"state diagrams". UML state machines are largely based on an object-oriented variant of ROOMchart [18]
and Harel statecharts [19].

In order to improve readability and reuse of the behavioural sub-model, one has introduced two
complementary views: a protocol view and a reactive view (Figure 52) [9]:

− a protocol view of the class behaviour focuses on a description of the protocol for use of object
services. The transition trigger events of such an automaton are necessarily the operation call type.
This view is also known as a "life cycle", since it tends to describe what an object can do;

− a reactive view of the class behaviour centers around a description of object class reactivity, i.e.
object response to both following kinds of event: a signal receipt, a given amount of time passed or
achievement of a particular state after triggering of completion transitions. This view is concerned with
what an object must do.

AIT-WOODDES Deliverable:

October 2001 M2/CEA/WP1.3/V2.1

Internal Page 56

Protocol View

["what it can do"
Reactive View

["what it must do"

Object behaviour

Figure 52: Two Points of View for Object Behaviour.

Both previous views contribute to model the logic behaviour of the domain classes and at this point all
algorithms issues have been put aside. Indeed, in order to ease reusability, maintainability and
evolutivity, the algorithmic parts are postpone in a specific model, the method behavi our model.

As delineated in Figure 53, in order to construct the behavioural model sketched just above, the method
proposes the activity refers to four sub-activities:

• The “describe protocol view” activity aims at describing the protocol view of a class behaviour
through a state machine diagram.

• The “describe reactive view” activity aims at describing the reactive view of a class behaviour
through a state machine diagram.

• The “describe domain algorithms” activity aims at describing the class operation behaviour which
following the current method allows the analyst to specify the application domain algorithms. This
step produces its results under the form of activity diagrams.

• The “declare real-time QoS” activity aims at declaring within the different behavioural view the real-
time QoS of the application.

AIT-WOODDES Deliverable:

October 2001 M2/CEA/WP1.3/V2.1

Internal Page 57

{until all requirements has been detailed}

Detailed Requirements Analyst

describe protocol view

describe reactive view

describe domain algorithms

declare real-time QoS

Structural Model

 B A

C

Detailed Scenarios Model

Behavioural Model

PAM

Figure 53: Activity – “build behavioural model” of the AIT-WOODDES methodology.

Before describing the different sub-activities that composed the behaviour description activity (see
sections), we will remind you the state machine semantics we have adopted for the approach due to
UML semantics variation points and existing ambiguities. If you need more details on this subject,
please refer to the UML profile attached to this method [3].

2.2.3.1 Semantics of the state machine execution

This section aims know at remind you quickly the execution semantics of the class behaviour, with
emphasis on two points19:

• describe choices relative to semantics variation points of UML;

• solve indeterminism issues pertaining to UML semantics ambiguities or lack of fulfilment.

In UML, state machines can be used both to describe the behaviour of particular entities such as classes
or operations but also to model global behaviour involving several objects such as use cases or
packages. In the approach we propose here, state machines are only used to describe the behaviour of
object classes. Each automaton is a specification of class behaviour. The behaviour of future class
instances is contained in an instance of this state machine specification. Classes whose behaviour is
described include passive object and protected passive object classes as well as real time object
classes. If sometimes we speak about the execution semantics of an object, it means implicitly the

19 The first point should be always done explicitly in any approach claiming to be UML-based! And the second

point also for approaches targeting real-time systems development, hard or soft constrained, whereas a real-

time systems must by essence DETERMINIST!

AIT-WOODDES Deliverable:

October 2001 M2/CEA/WP1.3/V2.1

Internal Page 58

execution semantics of the state-machine describing the behaviour of the object. So all this discussion
leads us to sate the following modelling rule:

Modelling rule 17 : Real Time Object classes must own one and only one state machine
describing their behaviour. Other classes (passive objects or protected passive objects) may also
own at most one state machine describing their behaviour.

For class behaviour specification, the UML state machine selected here is a restricted view whose overall
philosophy follows this one of "protocol" machine as described in [20] (see pp. 2-153). This type of state
machine operates on the principle that transition firing will not trigger execution of a sequence of actions
specified in the right-hand portion of the fired transition, but instead executes a method implementing the
operation attached to the fired transition. Such UML automatons behave as though, on reception of the
transition trigger event, an internal event were generated within the state machine context. This internal
event in turn triggers execution of the method implementing the operation specified by the transition
trigger event.

One significant restriction of state machine we use there is it has no orthogonal composite states. The
substates of a composite state are thus either simple states or non-concurrent states. The orthogonal
state feature of conventional UML machines was not preserved here, since state machine execution
semantics associated with this notion are currently still very ill-defined. However, this feature will most
likely be incorporated later, once the UML standard has evolved toward a greater degree of clarity.
Indeed, internal concurrency introduced through concurrent composite states may be easily replaced
thanks to concurrency mechanism of real time objects (cf. 2.2.2.5).

Modelling rule 18 : A state machine does not contains concurrent composite states. For this
reason, modelling elements relating to this notion (e.g. fork or join-type pseudo-states, and the
notion of SynchState) are likewise absent from behaviour models in this proposed method.

To permit simplification of class behaviour in an application, the notion of actions in a state, whether it be
incoming or outgoing has been omitted. As has the notion of activity, which enables introduction of
parallelism inside the object. Instead, this kind of concurrency is already available via the notion of Real-
Time Object.

Modelling rule 19 : States of a state machine must contain neither entry actions, nor exit
actions nor activity.

-

In order to position the semantics with respect to the UML standard, the following discussion is
organized in the same way as paragraph 2.12.4 (see chapter 2 - UML Semantics, topic 2.12 - State
Machines, pages 2-143 to 2-152) of UML standard, V 1.3, [20]. Paragraph 2.12.4 is divided into
subparagraphs that deal with the different elements of the UML meta-model involved in specifying state
machines. For simplification purposes, two types of elements have been omitted here:

AIT-WOODDES Deliverable:

October 2001 M2/CEA/WP1.3/V2.1

Internal Page 59

− those relating to the notion of "concurrent state", since the approach presented here does not
integrate this notion (see Modelling rule 2);

− all elements that do not change, i.e. are taken over as such into the approach and therefore require
no further study.

UML state machine semantics are described in terms of the mechanisms of a hypothetical machine that
implements a state machine specification. There are three key components of this hypothetical machine:

• an event queue that holds incoming event instances until they are dispatched;

• an event dispatcher that selects and dequeues event instances20;

• an event processor that processes the current event according to UML semantics. This component
is simply referred to as the "state machine".

The rest of this section tackles this three points.

The event queue and dispatcher

The real-time object paradigm is the main model element introduced by the current approach to model
real-time application. The state machine semantics described here is relative to this context, i.e. we
depict in this section the execution semantics of statemachine describing the behaviour of a real-time
object.

The event queue of the state machine describing the behaviour of a real-time object is a mailbox [21]. In
UML, events are dispatched and processed one at a time. The order of dequeuing is not defined, leaving
to the user the possibility of modelling different priority-based dequeueing schemes.

In our case, a message posses always a required real-time feature (see sections 2.2.3.5 et 2.2.4.3)
either explicitly specified by the sender or implicitly inherited by constraint propagation. Two real-time
constraint specification models are possible, i.e. priority-based or deadline-based, but it is not possible
to mix both policy within a same application model. In both cases, the event with the severest constraint
(highest priority or shortest deadline) is selected for processing in the object mailbox.

Event processor – run-to-completion step

In UML, event processing semantics are based on the "run-to-completion" assumption, meaning that an
event can only be dequeued and dispatched if processing of the previous current event is fully completed.

The run-to-completion assumption simplifies the transition function of a UML state machine since, by
serializing treatments triggered by various events, it precludes conflicts between them.

The run-to-completion assumption is certainly effective in ensuring the consistency of a conventional
UML state machine, in which transitions specify all of the required processing in the form of a given
sequence of actions. However, if, as is the case here, the approach relies on the notion of "protocol state
machine" defined in UML, this assumption is no longer adequate. This category of state machine (p. 2-
153 [20]) is based on the premise that transition firing does not trigger execution of a sequence of

20 The UML standard does not define the order in which events are dequeued. This point is a well-identified

semantics variation point that any UML-based approach should have to explicitly be described before anything

else!

AIT-WOODDES Deliverable:

October 2001 M2/CEA/WP1.3/V2.1

Internal Page 60

actions specified by the fired transition, but instead executes the method implementing the operation
attached to said transition. This type of UML automaton functions as though receipt of a transition
triggering event caused generation of an internal event implementing the operation associated with the
trigger event.

By the time a protocol-transition generates an internal event, it has fully completed the processing
associated with receipt of its trigger event. The automaton underlying the fired protocol transition is thus
considered to have performed an RTC step. It can then dequeue and process another event. At this
stage, however, nothing guarantees that the method triggered by firing the previous protocol transition
has been fully executed. Under such conditions, several methods may be led to execute in parallel and,
therefore, to conflict with each other on accessing shared resources.

To avoid this type of situation, the following condition can be added to UML run-to-completion semantics:

"Where the previous current event transition is the protocol-type, its processing is only deemed
completed once the method associated with the processing underway has fully executed."

In this case, the protocol transition is said to have performed an "RTC step" once the method triggered
by firing it has been fully executed. This solution alleviates possible concurrency conflict problems.
Adding the new condition enables the same behaviour as for the standard "run-to-completion"
assumption, i.e. serializing of intra-object treatments.

The real-time objects behaviour semantics have been somewhat modified to allow for more parallelism
within the application. As already demonstrated above, simply applying the standard "run-to-completion"
assumption to protocol-type UML state machines may lead to situations where several methods execute
in parallel. The real-time object approach thus consists of maintaining this possibility for as long as no
problems occur, i.e. the methods executing in parallel are not concurrent. As described in section
2.2.2.5, in specifying the operations that define a class interface, the user adds a property specific to
each operation relating to its concurrency constraint. An operation may thus be qualified as a write, read
or parallel operation. The execution model proned here is namely based on the "1 writer/N readers"
protocol. The challenge here, therefore, is to adapt the initial "run-to-completion" assumption defined in
UML to protocol-type state machines so that read operations, which do not generate concurrency
problems, can take place in parallel. Execution of write operations must then be serialized to avoid
conflicts in accessing shared resources.

As already seen in previous paragraphs, the class behaviour automaton comprises two types of
transitions: protocol- and triggering-transitions. In both cases, transition firing has the same impact on
the behaviour of the described object, i.e., it triggers execution of an associated-method (which is
implicitly specified, via the name of the triggering event, for protocol transitions and explicitly specified,
through a CallAction for triggering-transitions). In the rest of this document, the term reader-transition
will refer to a transition whose associated-method concurrency mode is the read type. In the same way,
the terms writer-transition and parallel-transition will designate transitions whose associated-method
concurrency modes are write and parallel respectively.

The aim is thus to construct a mechanism that enables or inhibits firing of a transition as a function of
the type of associated-method concurrency and the execution context (i.e. types of methods being
executed). Table 1 shows specification of this protocol by execution context (shown horizontally) and
type of transition to be fired (shown vertically). The word "yes" appearing in a cell indicates that firing of a
transition is possible in whatever the given context, with "no" meaning the opposite.

AIT-WOODDES Deliverable:

October 2001 M2/CEA/WP1.3/V2.1

Internal Page 61

Execution context

Type of transition to be fired

1 writer method N reader
methods (N≥0)

N parallel
methods (N≥0)

No method
executing

Parallel-transition Yes Yes Yes Yes

Reader-transition No Yes Yes Yes

Writer-transition No No Yes Yes

Table 7: Transition Firing Situations as a Function of Associated-Operation Concurrency Mode and
State Machine Execution Context.

Conflicting transitions

In UML, it is possible for more than one transition to fire at the same time. When this happens, such
transitions may be in conflict with each other. Take the case of two transitions originating from the same
state, triggered by the same event, but with different guards: If both guard conditions are true, there is a
conflict between the two outgoing transitions. Only one of them must be fired. But which one and what
criteria can be used to make the choice?

UML semantics provide no answer to this question!

In ACCORD/UML, if such a situation occurs, the model is ill-formed. In real time system development,
one important property of the developed application is its determinism. And conflicting transitions give
rise to the type of non-deterministic situation this approach seeks to eliminate.

In UML, the notion of conflicting transition is defined as follows:

"Two transitions are said to conflict if they both exit the same state or, more precisely, if the intersection
of the set of states they exit21 is non-empty."

UML semantics proposes a transition priority rule based on a state containment hierarchy. However, this
rule does not provide solutions to all the possible conflicts arising between transitions. The situation
described in Figure 54, for example, remains non-deterministic in terms of UML semantics. Transitions t1
and t2 are in fact triggered by the same type of event and originate from the same state.

S1
…

…

e / m1() ;

e / m2() ;

â non-determinism

t2

t1

Figure 54: Non-Deterministic Situation in a UML State Machine.

The systems aimed by AIT-WOODDES are real time ones, where non-deterministic situations are
unwelcome. The approach has also to integrate the priority rule defined in UML (see above) and add a

21 If the source state of a transition is a nested state, i.e., part of a state containment hierarchy, a fired transition

will in fact exit not only the nested source state, but also, transitively, all of the latter's parent states.

AIT-WOODDES Deliverable:

October 2001 M2/CEA/WP1.3/V2.1

Internal Page 62

modelling rule enabling elimination of any such remaining contentious situations. In the situation
described in Figure 54, with the above execution semantics, the situation becomes deterministic and
can be statically analysed. Several cases are possible depending on the type of concurrency constraints
(Write, Read or Parallel) associated with methods m1 and m2. All of these potential cases are
summarized in Table 8.

m1

m2

W R P

W MEN MEN PE

R MEN PE PE

P PE PE PE

Key:

W: writer method

R: reader method

P: parallel method

MEN: Mutual Exclusion Necessary

PE: Parallel Execution

Table 8: Rules Governing Conflicts in Transitions Exiting a State.

This table demonstrates that, if one of methods m1 or m2 is a writer method, the two transitions t1 and t2
exiting the state described in Figure 54 must be mutually exclusive. In all other cases, the policy of "1
writer/N readers" enables concurrent execution of both methods. A generalization of this case then
provides the following modelling rule:

Modelling rule 20 : The guard of a writer-transition exiting state S and triggered by a w type
event must be mutually exclusive with respect to all guards of the set of transitions exiting S and
also triggered by w. Otherwise, the model is considered to be ill-formed.

Example of execution

The following paragraphs provide an example of the multitasking behaviour of a real time object, based on
all of the above described rules. This example is based on an object O with three operations (op1_w,
op2_r et op3_p), whose concurrency modes are write, read and parallel respectively.

In the first sequence illustrated in Figure 55, O receives the successive messages m1_w, m2_w, m3_r
and m4_r. Message m1_w22 is associated with a writer method that cannot execute, since no treatment
is currently underway. Message m2_w must be serialized, since a writer method, op1_w, is already
executing. Message m2_w is accounted for as soon as the previous execution of op1_w is completed.
Message m3_l arrives during execution of the operation associated with m2_w. The newly arrived
message is associated with a read operation, op2_r. Since a write operation, op1_w, is then underway,
op2_r execution must be serialized. Following execution of op2_r, m4_r, a message associéated with
op2_r, is received. The associated operation is the read type and there is only one other operation – also
a read – underway. In this context, op2_r can thus be carried out in parallel.

22 mX_w is the name of the message triggering operation opX. The suffix " _w " indicates that the triggered

method is the write type. Suffixes " _r " and " _p " indicate that the triggered method is the read or the parallel

type respectively.

AIT-WOODDES Deliverable:

October 2001 M2/CEA/WP1.3/V2.1

Internal Page 63

(F, 0) (T, 0) t

st
ar

t_
op

1_
w

Execution context

en
dO

f_
op

1_
w

st
ar

t_
op

1_
w

 en

dO
f_

op
1_

w

(T, 0)(F,
0)

(F,
0)

st
ar

t_
op

2_
r

en
dO

f_
op

2_
r

(F,
1)

(F, 2)

st
ar

t_
op

2_
r

en
dO

f_
op

2_
r

(F,
1)

m1_w m2_w m3_r m4_r

…

Message blocked by concurrency problems

Message blocked by priority problems

Sending of an internal event

Message triggering a writer -method

Message triggering a reader-method

Message triggering a parallel-method

Receipt of an external message

op1_w

op2_r

op3_p

op2_r op2_r op1_wop1_w

Figure 55: Illustration of the Implemented RTC assumption (1/3).

In the subsequent sequence, after m4_p, O receives messages m5_w, m6_p, m7_r, m8_w and m9_r
successively. The write-message m5_w is received while no processing is underway. For this reason,
associated-method op1_w can begin executing immediately. Message m6_p arrives during this
execution and triggers operation, op3_p, whose concurrency mode is parallel. The method implementing
this operation can thus execute regardless of its execution context. Later, following completion of the
writer-method previously underway, the object receives read-message m7_r. Execution of associated-
method op2_r is immediately possible, since the only other method executing is a parallel one. During
execution of the method triggered by handling of m7_r, write-message m8_w is received, but is blocked
for reasons of concurrency (i.e. a read message is being processed). While the same execution is still
underway, read-message m9_r follows on m8_w. Message m9_r has a time constraint that gives it
priority over m8_w. Since m9_r is associated with a reader method and the method executing is also the
read type, processing associated with m9_r can take place parallel to the execution underway. Message
m8_w is processed sequentially, following completion of the two reader methods.

(F, 0) t

Execution context

en
dO

f_
op

2_
r

(F, 1)

st
ar

t_
op

2_
r

st
ar

t_
op

2_
r

en
dO

f_
op

2_
r

(F,
2)

(F,
1)

(F,
0)

st
ar

t_
op

1_
w

en
dO

f_
op

1_

(T, 0) (F, 0) …

m7_r m8_w m9_r m9_r takes priority over m8_w

en
dO

f_
op

1_

(F,
1)

(T, 0)

st
ar

t_
op

3_
p

en
dO

f_
op

3_
p

(F, 0)

m6_p

Message blocked by concurrency problems

Message blocked by priority problems

Sending of an internal event

Message triggering a writer-method

Message triggering a reader-method

Message triggering a parallel-method

Receipt of an external message

op1_w

st
ar

t_
op

1_
w

…

…

m5_w

op2_r

op3_p

op2_rop2_r op1_wop1_w op3_p

Figure 56: Illustration of the Implemented RTC Assumption (2/3).

The following sequence implements the three messages m10_r, m11_w and m12_r. This configuration
resembles the m7_r, m8_w et m9_r example given earlier, except that, this time, the second read-
message, m12_r, has a time constraint with lower priority than write-message m11_w. Message m12_r is
therefore blocked until m11_w has been taken into account, since the latter has a severer time

AIT-WOODDES Deliverable:

October 2001 M2/CEA/WP1.3/V2.1

Internal Page 64

constraint. Since the operation associated with this method is the write-type, processing of the
associated-method is serialized and starts as soon as the method underway is fully executed. Execution
of method op2_r associated with m12_r must likewise be serialized, since a writer method is already
underway, and must wait to be executed for the associated method triggered by m11_w to be completed.

t

Execution context

en
dO

f_
op

2_
r

(F, 1)

st
ar

t_
op

2_
r

st
ar

t_
op

1_
w

 en
dO

f_
op

1_
w

(F,
0)

(F,
0)

st
ar

t_
op

2_
r

en
dO

f_
op

2_
r

(F, 1) (F, 0) … (T, 0) (F, 0)

m10_ m11_w m12_r
m12_r has lower priority than m11_w

…

…

Message blocked by concurrency problems

Message blocked by priority problems

Sending of an internal event

Message triggering a writer-method

Message triggering a reader-method

Message triggering a parallel-method

Receipt of an external message

op1_w

op2_r

op3_p

op2_r op1_w op2_r

Figure 57: Illustration of Implemented RTC Assumption (3/3).

2.2.3.2 Activity – “describe protocol view”

The protocol view corresponds to a specific use of UML state machines, i.e. specification of call
protocols for a class, also known as the "life cycle" of that class. Protocol automatons define the context
and the order in which class operations may be called. In a way, they act as the "operating modes" of
the classes whose behaviour they describe. Operation behaviour is then contained in the methods
specification describing the implementation of operations, rather than in basic action sequences
dispersed over the various transitions of a state machine. Protocol state machine transitions are a more
restricted version of standard UML transitions. They have been given the name protocol-transition and
comprise only a trigger event limited to operation calls (CallEvent) as well as a possible guard condition.
The right hand side of the transition specification is empty, since the action sequence is implicit, i.e.
contained in the method specification associated with the operation invoked by the received event. In
subsequent paragraphs, the method executed after firing of a protocol-type transition is referred to as
associated-method. This term designates a method that implements the operation associated with a
protocol-type transition trigger event.

Modelling rule 21 : The protocol view of behaviour automaton contain only protocol-type
transitions whose syntax is as follows:

event-name ‘(’ comma-separated-parameter-list‘)’ ‘[’ guard-condition ‘]’

where event-name is the name of an operation belonging to the interface of the class defining the
execution context of the protocol automaton containing the transition.

Note that invoking the associated-method does not trigger a new event in the application, but instead
serves as an internal event of sorts, within the context to which the state machine is attached.

As describe in Figure 58, this activity, performed by the detailed requirements analyst, may be divided
into both steps:

AIT-WOODDES Deliverable:

October 2001 M2/CEA/WP1.3/V2.1

Internal Page 65

• The “identify states and transitions” step aims at building the protocol view of the class’
behaviours. The analyst identifies characteristics state of a class and links them via transitions.

• The “process unexpected messages” step focuses on the specification of the behaviour following
the receipt of messages that are unexpected in a given state of the object.

The output of this step is the work product called Protocol View. This latter is a state machine diagram
describing the protocol view of the global behaviour of class.

 Detailed Requirements Analyst

{until all requirements has been detailed}

Structural Model

 B A

C

Protocol View

PAM

identify states and transitions

process unexpected messages

Detailed Scenarios Model

Figure 58: Activity – the “describe protocol view” Activity of the AIT-WOODDES Methodology.

Step – “identify states and transitions”

In UML, if multiple outgoing transitions emanate from a junction or a choice point, only one of the
outgoing transitions, whose guard is true, is taken. Where multiple transitions have guards that are true,
a transition from this set is chosen and fired by an algorithm that is not specified in UML. To supplement
this variation point, one applies a modelling rule with enough scope to preclude this type of situation. By
applying Modelling rule 22 :, a pseudo-state of the junction or choice type may only has one outgoing
transition whose guard is true. Therefore, non-determinist issues can arise from such modelling point that
is very important in the real time domain.

Modelling rule 22 : If a junction or choice-type pseudo-state has multiple outgoing transitions,
their respective guards must be mutually exclusive, so that only one transition can fire at a time. In
the opposite case, the model will be considered to be ill-formed.

The following paragraphs provides simple examples of specifications for state machine protocol views
illustrating the different steps of the “describe protocol view” activity. In the same way as for previous
chapters, Speed and Regulator classes serve as illustrations, in this case of behaviour modelling.

Analysis of application specifications results in attachment of two states to the regulator Speed class:

− a state known as "InService", in which the object is operational and can perform acquisition
operations and updates of its attributes;

AIT-WOODDES Deliverable:

October 2001 M2/CEA/WP1.3/V2.1

Internal Page 66

− and a "Standby" state, in which the object is awaiting a request to start acquisition operations.

On this basis, the analysis is then refined by specifying which operations can be called in the different
states and which transitions are triggered by calling them.

The first issue of interest is transition from one state to another. According to UML rules for protocol
automatons, transition between two states can only be achieved by receiving an operation call. In the
example given here, transition from InService to Standby is achieved by receiving a call to the Speed
class operation startAcquisition. The opposite transition is associated with the stopAcquisition operation.

An object owns two special families of operations – create operations and destroy operations. The first
are called to instantiate the objects of a class and the second to destroy target instances.

The responsibility of a state machine attached to a class is to describe the overall behaviour of the
instances of that class, i.e. its instance creation and destruction stages. To do so, UML introduces two
types of particular states: initial states and final states.

final states: In UML, a final state is a special kind of state signifying that the enclosing composite state
is "completed". If the enclosing state is the state machine top state, this means that the entire state
machine has completed. UML semantics do not explain the significance of state machine completion or
the impact of this "completed" state on the context attached to a state machine. It is now recognized
that UML class instantiation and destruction semantics are globally unclear with respect to the notion of
behaviour specification via a state machine. The notion of state machine instance does not in fact exist
in UML.

To remedy this lack of clarity, the present method takes the following position: each time a final state is
reached, the entire state machine is considered to be "completed". If a composite state is completed,
the enclosing state can also be considered to have reached a final state, i.e. it is also "completed". The
same is true of states that are transitively owned through the hierarchy rooted in the top state, which
encloses all state machine states. Moreover, if a state machine has completed and its context is a
class, then the state machine instance and the object whose behaviour it describes are destroyed. This
leads to the following modelling rule:

Modelling rule 23 : An event triggering protocol-transitions whose target state is a final state
must be associated with a destroy-type operation. This same destroy operation must belong to the
interface of the statemachine context class.

For the Speed class, final state can be reached from both Standby and InService states. The model thus
contains several final transitions, and each of these is associated with a Speed class destroy operation
by default. The result is a preliminary version of a protocol automaton describing the life cycle of Speed
class objects (Figure 60):

InService
startAcquisition()

stopAcquisition()

destroy()

destroy()

Standby

AIT-WOODDES Deliverable:

October 2001 M2/CEA/WP1.3/V2.1

Internal Page 67

Figure 59: Specific Case of Final Transitions and Destroy Operations.

In UML, initial transitions (meaning all transitions originating from an initial state) do not usually have
trigger events. They are thus executed automatically, when a transition entering a composite state is
fired. However, the initial transition from state machine top state is an exception to this rule: it is the only
initial transition that can own a trigger event (which must be the CreateEvent type). This special kind of
event is linked with a special operation, a class constructor operation whose execution generates a new
class instance. UML semantics also require that an initial state have one and only one outgoing
transition, as opposed to the different constructor operations available to a class. There is thus a
contradiction between the multiple instantiation capabilities (different create operations) of a class and
the need to specify its behaviour with a top state having no more than a single initial transition, even
where that transition is required for class instantiation modelling. To overcome this inconsistency in UML
semantics, one authorizes here the initial state of a state machine top level to have several outgoing
transitions triggered by a CreateEvent-type event. This is treated as a divergence from UML semantics,
since the need for several create operations per class seems inevitable. We will try to overcome this
issue in UML2.0.

Project specifications call for the Speed class to have a single create operation associated with the initial
transition resulting in the Standby state. A supplemented version of the protocol view of Speed class
behaviour then shows (Figure 60):

InService
startAcquisition()

stopAcquisition()

destroy()

create()

destroy()

Standby

Figure 60: Initial Transition and Speed Protocol View.

The problem raised above can be illustrated by adding to the Speed class an additional create operation.
Take, for example, the operation create(spd: integer), whose execution results in creation of a Speed
class instance directly in the InService state. The model of the Speed class behaviour protocol view then
becomes:

InService
startAcquisition()

stopAcquisition()

destroy()

create()

destroy()

Standby
create(spd: integer)

Figure 61: Definitive Protocol View of the Speed Class Behaviour Automaton.

The next step is to specify, on a state by state basis, which operations may be called. In the InService
state, operations that are both legitimate and consistent with the standard are: acquireSpeed and
giveSpeed (Figure 62).

AIT-WOODDES Deliverable:

October 2001 M2/CEA/WP1.3/V2.1

Internal Page 68

acquireSpeed()

giveSpeed()
Stndby InService

startAcquisition()

stopAcquisition()

destroy()

create(
)

destroy()

[Ok]

[not(Ok)]

Figure 62: Speed Class Protocol Automaton

Finally, note that a transition triggered by receipt of a call to acquireSpeed has two possible paths in the
protocol automaton: transition from the InService state to itself; and transition between the InService and
Standby states. Such transitions are composite ones, each made up of three simple transitions
connected by a "choice"-type pseudo-state. Since guard conditions for the two transitions originating
from "choice" transitions are exclusive, the choice point is deterministic. Choice is made by dynamic
evaluation on executing the associated method for acquireSpeed, using the boolean expression Ok . If
this boolean evaluates true at the end of the first simple transition ("choice"), the target state of the
transition triggered by acquireSpeed is InService. If the expression Ok evaluates false, the object returns
to Standby state at the end of the transition. This second path corresponds to cases where the speed
acquisition operation detects a communication problem with the speedometer. It then places the object
on Standby (by performing any necessary treatments), since resumption of speed acquisition may, for
example, require specific sensor reconfiguration.

Step – “process unexpected messages”

The preceding paragraphs explained how object behaviour is specified for an operating mode considered
to be "normal". The different state machine views (protocol and triggering) used to specify the overall
behaviour of an object describe its potential behaviour as a function of state. Now, it may happen that,
while an application is running, one of its objects receives a message that it cannot handle in whatever
its current state. This is what as known as an "unexpected message".

In such situations, UML calls by default for the "unexpected" message to be ignored and lost. It is,
however, possible to "defer" the message, i.e. to save it until the next state reached by the object. When
the object reaches this subsequent state, the saved message is either again deferred in the context of
the new state, immediately handled, or, if it is neither deferred or handled, ultimately lost.

In a real time context, it may be wise to modulate this behaviour. An object may, for example, be
temporarily incapable of handling a message at a given time, but later recover the required capability. The
following rule is thus applied by default: a message that cannot be immediately handled is saved and
placed on standby until the object is capable of processing it. In the event of malfunction or errors in
application design, such a strategy could, however, keep messages on standby for indefinite periods of
time.

To model this type of behaviour the approach we present here therefore proposes additional mechanisms
for refining the description of object response to unexpected messages. These mechanisms can only be
implemented for real time or protected passive objects and apply both to operation call and signal-type
messages.

AIT-WOODDES Deliverable:

October 2001 M2/CEA/WP1.3/V2.1

Internal Page 69

By default, one prefers to consider that messages not immediately processed in the current object state
are saved and put back into the object mailbox. When compared with standard UML semantics, this
amounts to saying that all events that can be received by a state machine are deferred for any state in
which they do not trigger transitions. Formally speaking, with respect to UML, this means that each top
state of each behaviour automaton defers all of the events processable by the object whose behaviour it
describes. (Indeed, an event deferred by a given state is implicitly considered to also be deferred by all
the direct or indirect sub-states of that state). Therefore, since any one state is necessarily a sub-state
of the top state, if the processed event does not trigger a transition, regardless of the state of the
automaton, it is deferred and not lost as was the case by default in standard UML semantics.

Modelling rule 24 : By default, an event that cannot be handled in a given behaviour automaton
state is saved for subsequent processing.

In addition, to enhance the expressive power of models developed with our approach and to specify
particular situations resulting from receipt of unexpected messages, the model selected offers three
special mechanisms for refining the description of a class behaviour automaton:

1. immediate rejection of a message with generation of an exception: Case where the instances of a
class cannot receive a message because they are not, at the time of receipt, in a state compatible
with its treatment. This situation is interpreted by the application as an instance usage error and
results in generation of an exception by the receiving object. The type of exception generated can be
specified for each state attaching to a state the tagged value RejectedException typed
userExceptionClass. The userExceptionClass may be either a class predefined in the underlying
development framework, e.g. RejectedException in ACCORD/UML, or a child of this class. It
contains the name of the raised exception, which must be of a type that can "inherit" from the
IncompatibleState type proposed by AIT-WOODDES framework. The default exception generated by
the object will also be IncompatibleState. If the user has provided for catching an exception, she/he
can then perform the relevant replacement operations. If not, the exception is routed back to the
application's real time object execution support layer, which detects a serious application error and
dispatches it to all of the real time objects to trigger a complete application halt.

2. immediate message discard: Case where the message is destroyed immediately on receipt if the

object is not in a state compatible with message processing23. Where the message calls for
execution of an operation with a return value or output parameters, the designer must define
replacement values for each such value and parameter. It is also possible here to specify generation
of an exception, using the tagged value IgnoredException. The generated exception must then be a
type that can inherit from IgnoredMessage class defined in the AIT-WOODDES framework. An
instance of the IgnoredMessage class is generated by default. If the user has provided for catching
the exception, she/he can then use it, while performing the necessary replacement operations. If not,
the exception is routed back to the real time object support, which takes it into account in
processing output parameters or the return value. In this case, the exception is dispatched only to
the object concerned, and the message sender ignored.

23 This is the behavior by default in UML

AIT-WOODDES Deliverable:

October 2001 M2/CEA/WP1.3/V2.1

Internal Page 70

3. placing message on standby: The third case is also the default operating mode. The unexpected
message is placed on standby until the object is able to handle it, provided that, in the meantime, its
deadline has not expired. If the message has no predefined processing deadline, it may remain "on
hold" indefinitely (which is why a deadline should always at least implicitly be attached to each
message treatment by a real time object).

To specify the appropriate response to receipt of an unexpected message, the designer has available two
tagged values, {rejectedEvent} and {ignoredEvent}. These values contain a list of types of events
rejected by the object and a list of events ignored by it in a given state. Each of these specifications is
only valid for the state to which it is attached.

Modelling rule 25 : A tagged value {rejectedEvent = (comma-separated-list-of-event-types)}
attached to a statet S specifies that, in this state, any event whose type corresponds to one of those
on the comma-separated-event-list is rejected.

The tagged value {ignoredEvent = (comma-separated-list-of-event-types)} attached to a state S
specifies that, in state S, any event whose type corresponds to one of those on the comma-
separated-event-list is ignored.

Note that another exception management solution is that offered by the loose synchronous messaging
mode. In such cases, the sender execution thread is suspended until message treatment actually
begins. This thread thus enables receiving and handling of exceptions generated for said message.

In the example used here, the Speed class control automaton can be refined by specifying reactors to
unexpected messages. If a Speed type object receives a message requesting a regulation halt, it is
placed in Standby state and then preferably ignores the message. The Standby state has a tagged
value, IgnoredEvent , containing the names of the concerned events, in this case stopAcquisition. By
contrast, if, in the same Standby state, an object receives a message requesting acquisition
(acquireSpeed operation call) or even a request for actual vehicle speed (giveSpeed operation call), then
the object must reject it (and generate an exception). This results in a new Speed class protocol
automaton, as shown in Figure 63.

 startAcuisition()

stopAcuisition()

Standby

{IgnoredEvent = (stopAcquisition)}

{RejectedEvent = (acquireSpeed,
 giveVitesse)}

InService

acquireSpeed()

destroy()

create()
giveVitesse()

Figure 63: Specification of the Speed Class Response to Unexpected Messages.

In general, object-oriented approaches only specify preconditions attached to a transition where they are
needed to reference data accessible within the context of the object. As already stated above, this
entails several distinct types of data:

− arguments supplied to the operation;

− object roles and attributes;

− object state, as specified by the control automaton.

AIT-WOODDES Deliverable:

October 2001 M2/CEA/WP1.3/V2.1

Internal Page 71

Of particular interest are the types of data likely to generate non-compliance with a precondition:

1. If referenced data relate only to argument values, there is always method rejection, followed by
generation of an exception and an application abort, unless the exception is caught in the execution
thread of the message sender.

2. Where an object state is involved, the same conditions apply as above and, where the object is a
real time object, any of the abovementioned mechanisms (rejection, discarding, standby) may be
activated.

3. Where the data of interest are object roles and attributes, and a Real Time Object is involved, one
uses the same type of behaviour specifications as those defined for object state constraints:
rejection, discarding or standby. If the object is a passive one, its behaviour is defined by default, i.e.
there is generation of an exception, which, if not reversed, aborts the application.

Obviously, it is not always possible to determine whether or not a given expression refers only to object
roles, attributes or state (if it uses pointers, for example). Then again, a same precondition may make
use of different types of data (e.g. method parameters and object attributes) and, in such cases, the type
of parameter responsible for violating it is often difficult to identify. The programmer must therefore
explicitly specify, using one of the preceding specifications, which real time object behaviour is
appropriate for each method precondition. By default, the behaviour elected will be the same as for
passive objects.

2.2.3.3 Activity – “describe reactive view”

Real time objects specifically correspond to the "reactive" elements of an application. Such elements are
capable of responding to received signals, reacting when some condition is reached, even initiating
automatic treatments on achieving a particular condition. Triggering state diagrams introduced into the
behavioural models provide a restricted view of overall object behaviour. They are an abstraction,
focussing on the reactivity of a class, by concentrating on four special aspects of its reactive behaviour:

1. so-called "automatic" object behaviour relating to a CompletionEvent (behaviour triggered after
the object enters a specific state);

2. behaviour occurring in response to a ChangeEvent, i.e. a boolean expression that becomes
true;

3. behaviour responding to a TimeEvent, i.e. expiration of a specific deadline;

4. response to signals to which the object class was declared receptive in the structural model
(Figure 45).

This view concerns only real time objects. Specification of object behaviour relating to real time status is
thus separated from the so-called "protocol" aspect of its behaviour, which may be independent of real
time status. Thus, if an object emanating from a real time object class is instantiated as a standard
object, it preserves the protocol content of its behaviour specification. By separating these two aspects,
it is possible to again build objects with greater portability, which are reusable in a different context, for
example with object approaches not necessarily dedicated to the real time domain.

AIT-WOODDES Deliverable:

October 2001 M2/CEA/WP1.3/V2.1

Internal Page 72

Definition of Class Behaviour Triggering View

Triggering automaton semantics are based on that of UML protocol automatons. This leads to the
restriction of UML state machines, and like the addition of protocol-transitions to protocol automatons, a
new specification of standard UML transitions is also introduced here.

The main restrictions about the triggering view of a state machine are related to the abovementioned new
type of transition, known as a triggering-transition. Its semantics is also defined as follows:

− The lefthand portion of a triggering-transition specification contains trigger events such as
SignalEvent, ChangeEvent, TimeEvent, or CompletionEvent (completion transition);

− The righthand portion of the transition specification, which contains the list of actions to be executed,
is restricted to a single, operation call-type action. Performance of this action generates an operation
call internal to the object, which results in execution of the method implementing the invoked
operation. Unlike protocol automatons, where action executed by firing the transition is implicitly
specified, in triggering automatons, the operation call action is explicitly specified in the righthand
portion of the transition.

Modelling rule 26 : Triggering views of behaviour automatons contain only triggering-transition-
type transitions whose syntax is as follows:

‘event-name ‘(’ comma-separated-parameter-list ‘)’ ‘[’ guard ‘]’ / …

… invoked-operation-name ‘(’comma-separated-parameter-list ‘)’

where:

− event-name is either the name of a signal declared in the structural model of the class defining the
triggering automaton context (SignalEvent), or the name of an event of the ChangeEvent or TimeEvent
kind declared in the automaton. If there is no event-name in the specification, the transition is a
completion-transition and the event is an internal one of the CompletionEvent kind;

− invoked-operation-name is necessarily the name of an operation of the class defining the execution
context of the protocol automaton.

To model the reactive view of the class behaviour, the detailed requirements analyst operates the
following steps (Figure 64):

• The “identify reactive transitions” step aims at building the reactive view of the class’ behaviours.
The analyst identifies reactive behaviours of a class and add matching reactive-transitions between
states already identified in the protocol view.

• The “process unexpected messages” step focuses on the specification of the behaviour following
the receipt of messages that are unexpected in a given state of the object.

• The “declare automatic treatment” step aims at declaring automatic behaviours of classes
through introduction of specific transition in the reactive view.

The output of this step is the work product called Reactive View. This latter is a state machine diagram
describing the reactive view as defined previously of the global behaviour of class.

AIT-WOODDES Deliverable:

October 2001 M2/CEA/WP1.3/V2.1

Internal Page 73

 Detailed Requirements Analyst

{until all requirements has been detailed}

Structural Model

 B A

C

Reactive View

PAM
identify reactive transitions

process unexpected messages

Detailed Scenarios Model

declare automatic treatment

Figure 64: Activity – the “describe reactive view” Activity of the AIT-WOODDES Methodology.

Step – “identify reactive transitions”

The Regulator class of the application example is used hereinafter to illustrate modelling of an automaton
triggering view. Figure 65 shows an excerpt from the protocol view of its behaviour automaton.

Halted

startRegulation() [V ≥ 50]

stopRegulation() destroy()

create()

InService

destroy()

maintain()

Figure 65: Excerpt from the Protocol View of the Regulator Class Behaviour Automaton.

The next paragraphs in this presentation supplement the description of Regulator class behaviour by
specifying its triggering view. As seen in a previous chapter, this class was declared receptive to two
types of signals: OnOff_Reg and StopCar. Project specifications call for OnOff_Reg to trigger a
complete halt in regulation if the system is in service and, where the opposite is true, to start it up again.
Where the regulator is not operating (Regulator instance in Halted state), this signal is attached to the
startRegulation method. If the regulator is already in service (Regulator instance in InService state), the
signal is attached to the stopRegulation signal. The StopCar signal must result in system shutdown and,
more specifically, in destruction of the object once speed acquisition is halted. It is thus natural to attach
this signal to destroy method execution, when the object is in InService state. This results in the
triggering automaton below (Figure 66):

AIT-WOODDES Deliverable:

October 2001 M2/CEA/WP1.3/V2.1

Internal Page 74

Halted

OnOff_Reg [V ≥ 50] /
startRegulation()

OnOff_Reg / stopRegulation()

StopCar/destroy() StopCar/destroy()

InService

Figure 66: Regulator Class Reaction to OnOff_Reg and StopCar Signals.

Remarks: In a multitasking context, prudence should be exercised in matters relating to object
destruction. This is because, once a real time object is destroyed, it can no longer receive messages;
and attempts to send messages to an non-existent object may cause serious application error. In the
case studied here, the result would be a sudden stop in the application, without assurance that all
operations normally preceding such an abort have been duly carried out. Object destruction must
therefore be consistently and carefully synchronized over the entire application. This is typically specified
in a special application stop scenario (see section 2.2.4 on the interaction model building).

The reaction of a given object must be one of the types of behaviour authorized for that object (no object
can do anything it has not been given the right to do), as specified in the protocol view of its behaviour.
Triggering-transitions associated with signal reception must therefore always be "legal" with respect to
the object control automaton. In practice, this means that a triggering automaton is always included in
the global control automaton of the class. Consider, for example, a transition t1 for the Regulator class
control automaton and transition t2 of the triggering automaton for the same Regulator class. Transition t1
is triggered by receipt of the call operation startRegulation and has as its source state Halted and its
target state InService. Transition t2 is triggered by reception of OnOff_Reg signal instances triggering
execution of the action that calls the startRegulation operation; and this transition has Halted and
InService as source and target states respectively. Transition t2 of the Regulator class triggering
automaton is "legal" since the Regulator class protocol automaton already owns transition t1.

AIT-WOODDES Deliverable:

October 2001 M2/CEA/WP1.3/V2.1

Internal Page 75

Modelling rule 27 : If a triggering-transition tdec of the triggering view of a behaviour automaton for
a class "C" is taken to have the following: source state S1and target state S2, triggered by an event
Evt, of the SignalEvent, ChangeEvent or CompletionEvent type and resulting in execution of an
action attached to the calledOpe operation, then tdec is legal only where the protocol view of the
behaviour automaton of C has a protocol-transition tpro with the following characteristics: source state
S1 and target state S2, triggered by an event of the CallEvent type associated with calledOpe.

tdecl is only legal if tpro exists !!

Ev / calledOpe() ;
S1

tdecl

S2

calledOpe() ;

tpro

S1 S2

ProtocolView Triggering View

Figure 67: Definition of a "Legal" Triggering-Transition.

One important, direct consequence of this modelling rule is that all of the possible states of an object
class are specified in the protocol automaton for that class. It is thus impossible, in a class triggering
automaton, to have a state that was not previously introduced into the protocol automaton for that class.

Modelling rule 28 : The complete set of states defined in the triggering automaton of a class is
included in the set of states defined in the protocol automaton for the same class.

Remark: Initial transitions in a UML state diagram can only have operation call-type triggers. The top
state of a triggering state diagram thus never owns an initial state.

Signal Event and Triggered Operation Parameters

Where the receiving object state so allows, signal reception triggers firing of a transition specified in the
triggering view of its behaviour automaton. Transition firing causes execution of the CallAction–type
action specified in the righthand portion of the transition. This in turn generates an internal call to the
associated operation, which results in execution of the method implementing the invoked operation.

Since communication by signal is asynchronous, the invoked operation must not have output parameters
or a return value. If it did, this would be a modelling error, since signal reception is associated with
receipt of an asynchronous message whose sender is unknown to the receiver (see section “Step –
“process unexpected message” on p.68).

Modelling rule 29 : If the trigger event of a triggering-transition is the SignalEvent type, the
operation specified in its righthand portion may have neither output parameters nor a return value.

On the other hand, operations specified on the triggering view transitions of a triggering automaton may
very well have input parameters in all cases. If an operation triggered by signal reception has input

AIT-WOODDES Deliverable:

October 2001 M2/CEA/WP1.3/V2.1

Internal Page 76

parameters, there are two possibilities: either the signal reception event triggering the transition has
parameters or it does not.

For a signal carrying no information, there are in turn three possibilities:

The triggered operation, specified on the fired transition, does not have parameters either. In this case,
there is no particular problem.

S1 S2
Sig() / operation()

Figure 68: Reception of a Non-parameterized Signal Triggering a Non-parameterized Operation

Each of the input parameters of the invoked operation has a default value. In such cases, default values
are used to execute the method implementing the operation specified on the fired transition.

Sig() / operation(In p1 : T1=defaultVal, ..., In pn : Tn=defaultVal) S2S1

Figure 69: Reception of a Non-parameterized Signal Triggering a Parameterized Operation

A calculation procedure exists for the values of each parameter of the triggered operation, for each
transition specified in the triggering automatons. In such cases, the designer must associate with the
transition a segment of code specifying this initialization. Said specification may be realized using a
tagged transition value { initParam }. This tagged value is the Expression type and contains a string of
characters evaluated in the selected implementation language; it likewise enables assignment of values
to the parameters of the triggered operation. In cases where both default values and a dedicated
calculation procedure specification are available, the values obtained with the calculation procedure will
determine those of the parameters used by the operation's associated-method.

S1 S2

Sig() / operation(In p1 : T1, ..., In pn : Tn)

{ initParam=(p1:= <expression_1>; … p1:= <expression_n> ;) }

Figure 70: Reception of a Non-parameterized Signal Triggering an Operation with Parameters Initialized
using an Additional, Explicit Expression

In the preceding situation, as the received signal did not have parameters, the event generated by its
receipt did not have parameters either. However, unlike the "pure" signals described in Harel-87
statecharts, UML signals are perfectly capable of carrying information in the form of parameters
attached to signal output. This means that a signal-type event can have parameters and it is thus
necessary to specify the mechanism enabling passage from the parameters of an event that triggers
firing of a triggering-transition (specified in the lefthand portion of the transition) and those of the operation
call action executed as a result of transition firing (specified in the righthand portion of the transition). In
the case examined here, there are two possibilities:

The signature of the action described on the righthand side of the fired transition is specified in a manner
consistent with the signature of the trigger signal event. This means that, if the signal event triggering the
transition is considered to own an ordered list of n parameters (pei)i∈[1..n], the signature of the operation
triggered by its receipt must begin with a list of input parameters (poi)i∈[1..n] of the same type. In addition,

AIT-WOODDES Deliverable:

October 2001 M2/CEA/WP1.3/V2.1

Internal Page 77

for any i from 1 to n, the parameter poi of the operation has the same type as received signal event
parameter pei. In this specific case, note that the parameters contained in the operation signature must
number at least n (the number of trigger signal event parameters). In cases where the action specified
on the transition righthand side has more than n parameters, all other parameters (whose subscript value
is necessarily higher than n) must have a default value.

S1 S2

Sig(pe1: T1, …, pen : Tn) /
operation(In po1 : T1, …, In pon : Tn, In pon+1 : Tn+1 = defaultValue, …)

Figure 71: Reception of a Parameterized Signal Triggering a Parameterized Operation

A procedure exists to specify use of data carried by the signal reception event, i.e. the passage from
event parameter values to the input parameters of the triggered method. This specification is achieved via
the tagged value { useSigData }, which contains the necessary segment of code. Said tagged value is
the Expression-type and contains a string of characters which, evaluated in the selected implementation
language, enables assignment of values to the parameters of the triggered operation as a function of
parameter values provided by the signal event.

S1 S2
Sig(pe1: T1, …, pen : Tn) / operation(In po1 : T1, …, In pom : Tm)

{useSigData=(po1=expr_1(pe1, ..., pen) ; … pom=expr_1(pe1, ..., pe n) ;)}

Figure 72: Reception of a Parameterized Signal Triggering a Parameterized Operation and Explicit Signal
Parameter Use Expressions

Step – “process unexpected messages”

This step is identical as this one of the “describe protocol view” activity (see section Step – “process
unexpected messages” p. 68).

Step – “declare automatic treatment”

To afford maximum object autonomy, the triggering automatons may also serve to specify automatic
treatments performed by the object when it reaches a particular state. To do so, it is possible to specify,
in a UML state machine, a set of transitions known as completion-transitions. This type of transition
has no explicit trigger, although it may have a guard defined. Completion transitions are triggered by a
special internal event known as a "completion event". Such an event is implicitly generated by the state
machine each time it reaches a stable state, i.e. when all transition and entry actions and activities in
the currently active state are completed. A completion event is processed as soon as it is sent. If the
current state of the object has an outgoing completion transition, firing of this transition takes priority over
that of any other transitions emanating from that state.

In the this approach, states have neither entry actions nor activity. This is why state automatons
describing class behaviour generate a completion event each time a transition finishes executing and
reaches a state. Thus, when a state has a completion transition-type outgoing transition, the operation
associated with such a transition is executed as soon as the state is reached and takes priority over all
other transitions emanating from that state. One of the results is that such a state cannot execute
anything other than a completion transition.

AIT-WOODDES Deliverable:

October 2001 M2/CEA/WP1.3/V2.1

Internal Page 78

Moreover, if a state has several outgoing completion transitions, because they are all triggered by the
same type of event (completion event), all of them can potentially be activated and must therefore be
mutually exclusive. This mutual exclusion conditions must be ensured by the respective guard of each
outgoing completion transition of the state. Any other solution would be a modelling error.

Modelling rule 30 : If a state has several outgoing completion transitions, all of those
associated with a write operation (i.e. with a concurrencyMode attribute positioned to write) must
have guards whose respective conditions are defined such that the transitions are mutually exclusive,
i.e. that only one of them can be fired at a time.

In the speed regulator example, it is advantages to enable automatic triggering of Speed class
acquisition operations as soon as the object enters InService state. To do so, a completion transition is
used and the following triggering view is specified (Figure 73):

InService

OnOff_Reg / startAcquisition()

OnOff_Reg / stopAcquisition()

/ acquireSpeed

StopCar / destroy()

completion transition
utomatique

Standby

[Ok]

[not(Ok)]

Figure 73: Automatic Triggering of a Transition on Entry into a State.

In the present case, a Speed-type object executes the acquireSpeed operation as soon as it enters the
InService state. If acquisition takes place correctly, the transition restores the object to the same state,
on completion of the method associated with the triggered operation. What is specified here is the
cyclic, autonomous operation of the object, since, once it reaches InService state, a completion event is
implicitly sent by the control automaton, again triggering the completion transition and so on…

If, however, acquisition does not take place correctly, the transition places the object on Standby, which
halts cyclic speed acquisition.

Again using the speed regulator as a basis, the situation where an instance of the Speed class is in
InService state and receives an OnOff_Reg signal, provides a good example. In this specific case, it
would be advantageous for OnOff_Reg signal receipt to be taken into account to trigger firing of the
InService transition to Standby and thus stop speed acquisition. But no such condition can exist, since,
if speed acquisition always takes place correctly, and because a completion event takes priority over any
other received event, the outgoing completion transition from InService state is inevitably triggered again
each time it completes. It may then be asked how the endless loop triggered by this situation can be
broken, i.e., how the internal completion event, which overrides all others, be cancelled out.

The answer to this question is to add to the completion transition a guard enabling choice of the
behaviour adopted as a function of object mailbox content. The approach calls for use, in the completion
transition guard, of a specific operation, isEvent. (<Eventname>). This operation uses as input the
name of an event, which then becomes true if the event is present in the mailbox, or false if it is not.
Specification of a guard of the [¬ isEvent(OnOff_Reg)] type on the previous completion transition
ensures that the completion transition is only fired if the object has not received an OnOff_Reg signal

AIT-WOODDES Deliverable:

October 2001 M2/CEA/WP1.3/V2.1

Internal Page 79

requesting halt in speed regulation. This is because isEvent(OnOff_Reg) becomes true if an OnOff_Reg-
type signal is present in the Regulator object queue. In such cases, the condition ¬ isEvent(OnOff_Reg)
is false and the guard is thus invalid. The completion event is then lost without having triggered the
completion transition and the loop is broken. The regulator object can subsequently take into account
the events waiting in the queue. The major advantage of this technique is to enable direct clarification, in
the class behaviour model, of transition priorities.

To ensure that the speed regulator behaves as expected, a [¬ (isEvent(OnOff_Reg)) ∧ ¬
(isEvent(StopCar))] guard is added to the completion transition executing the acquireSpeed operation.
This additional guard ensures that the completion transition will only be fired automatically if the object of
interest has not received OnOff_Reg or StopCar signals. Receipt of this type of event does, however,
break the loop created by the completion transition. A transition exiting the InService state, triggered by
OnOff_Reg or StopCar, may then be fired (Figure 74).

OnOff_Reg / startAcquisition() ;
Standby

OnOff_Reg / stopAcquisition() ;

[¬ (isEvent(OnOff_Reg))
 ∧ ¬ (isEvent(StopCar))]

 / acquireSpeed(); StopCar / destroy() ;

StopCar / destroy() ;

InService

Figure 74: Settling Triggering Conflicts by Adding Preconditions.

2.2.3.4 Activity – “describe domain algorithms”

The subchapter 2.2.3.1 above described how to model the control logic of a class using a state machine
with two viewpoints – triggering and protocol. Each of these two automatons specifies the behaviour of an
object in response to an operation call or a signal, following a change materialized by a boolean
expression that becomes true or after entering a particular state. In each of these cases, the impact of
the event is the same, regardless of its type. The receivi ng object executes an operation call-type action.
Execution of this action calls the operation associated with it (always a receiving object operation) and
thus executes the algorithm specified by its associated-method. To further refine the application model, it
is then necessary to specify its algorithmic components, i.e. class methods.

This stage in modelling is chiefly concerned with the external specification of methods, i.e. with method
synchronisation points. These points are marked by sending messages and, where appropriate, awaiting
replies to them (case of strong synchronous and delayed synchronous messages). Up until now, it was
enough to specify that a class was capable of receiving messages in the form of signals or operation
calls, without defining aspects of the message sending context. one now proposes to provide such
definitions in the methods behaviour automaton. Like the Object Flow diagrams of the CLASS-RELATION

[9], methods behaviour diagrams describe the sequence of elementary actions used by the method,
together with the objects manipulated and the messages sent during method execution.

2.2.3.5 Activity – “declare real-time QoS”

One of the bases for Real Time Object modelling is that real-time constraints are generally attached
either to messages sent or received by the Real Time Objects of an application, or to clocking of cyclic
treatments initiated automatically by these objects.

AIT-WOODDES Deliverable:

October 2001 M2/CEA/WP1.3/V2.1

Internal Page 80

Remark: In this subchapter, "time constraint" refers essentially to deadline, periods, etc. However, for
systems allowing static computation of various application task priorities (e.g. with RMA-type
techniques), it is possible to use a development environment version based on the notion of priority. In
such cases, time constraints are expressed using the same RTF (Real-Time Feature) tagged value, but
then have a single parameter known as Priority. A time constraint thus takes the following form:

{ RTF = (Priority, priority-value) }

where priority-value is a priority value of the underlying real time operating system.

To specify the real-time constraints in a model, one have introduced a specific tagged value RTF. This
value is attached to model elements in order to model a real-time constraint. This constraint can be
attached to the action that generates a message output. It is then applied to treatment of the
corresponding event by the object receiving the message. The Deadline value is defined with respect to
an absolute reference date, RefDate, and is given as a parameter of the RTF value by specifying the
reference unit of the time characteristic in the following form:

{RTF = (RefDate, Deadline(value, unit))}

where unit may have one of the predefined values "sec" or "mSec" (or another value defined by the user
and convertible to one of the two reference units24) and RefDate is a TimeVal-type value introduced by
the framework to express the concept of absolute date.

Once it has been specified that a treatment must be completed before a given date, the user may wish
to also specify that said treatment may only begin on a certain date. To do so, she/he uses the concept
of latency, as expressed by the ReadyTime parameter of the tagged value RTF. This parameter is also
expressed in terms of delay with respect to an absolute reference date, the same date as is used to
define deadline. The time constraint attached to the model element to be specified then becomes:

{RTF = (RefDate, Deadline(value2, unit2), ReadyTime(value1, unit1))}

As regards the real-time constraints attached to sent messages, such constraints are
specifically concerned with treatments triggered by received messages. In UML, messages may be sent
in either of two different forms: signals (CallAction-type action) or operation calls (SendAction-type
action).

For signals, the one enables real-time constraint specification at two different points in the model:

− signal output;

− signal reception.

Real-Time Constraints and Signal

Sent signal specification involves both the structural class model, in which are specified, among others,
the types of signals that can be sent by each class and the model specifying the behaviour of an

24 The time unit used by default in the ACCORD/UML development environment is the second (" sec").

AIT-WOODDES Deliverable:

October 2001 M2/CEA/WP1.3/V2.1

Internal Page 81

operation. In the first case, if a time constraint is attached to a type of signal that a given class is
capable of sending, this constraint will have the same value for each instance of that class and each time
the predefined type of signal is sent. Under these conditions, it is not necessary to specify the DateRef
parameter for constraint RTF. The reference date used as a basis is, in fact, the date on which the signal
is sent.

As an example, the diagram in Figure 43 specifies that the EngineStarter class is capable of sending
StopCar signals. As confirmed by the speed regulator project specifications (or its dictionary), when the
car engine stops, the system must also be able to stop, in less than 100 ms. Modelling of this time
characteristic in the class structural diagram modifies the previous specification as shown in Figure 75
for the EngineStarter class:

StopCar

{RTF = (Deadline(100, ms))}

EngineStarter
 "interface"

stop()

Figure 75: Time Constraint in the Structural Specification of a Type of Sent Signal

On signal receipt point of view there are two levels at which real-time constraints can be specified: either
at structural level, i.e. on declaration of the received signal type (Figure 44); or at behaviour level, i.e. on
triggering-transitions activated by a signal-type event.

In the first case, the DateRef parameter of the RTF constraint is not specified. This is because the
reference date implicitly attached to the message is the date on which the signal was sent. The relative
deadline expressed by the Deadline parameter must then be determined according to signal output date.

For example, the Regulator class is receptive to StopCar and OnOff_Reg-type signals. To specify that
the Regulator class must respond to receipt of an OnOff_Reg signal instance within 100 ms, a time
constraint is simply added to the declaration of receptivity to the OnOff_Reg signal and the structural
specification of the Regulator class is then supplemented as follows (Figure 76):

Regulator

StopCar

OnOff_Reg

{RTF=(Deadline(100, ms))}

Figure 76: Real-Time Constraint in the Structural Specification of Signal Receipt.

This model has a significant drawback in that it penalizes the reusability of the object specified.
Whatever the OnOff_Reg sender, the real time constraint attached by Regulator instances to the
treatments triggered by signal receipt will always be the same: 100 ms. However, for this particular
communication mode, it may be useful to specify a signal reception constraint. Signal-type
communication is in fact a means for transmitting data. The same signal instance can thus be perceived
by several objects and the treatment induced by signal receipt is specific to each receiving object. In
such cases, it may be advantageous for the user to specify a different time constraint for each treatment,
i.e. to specify it at signal receipt rather than signal output.

AIT-WOODDES Deliverable:

October 2001 M2/CEA/WP1.3/V2.1

Internal Page 82

Where a triggering-transition is assigned a time constraint, then, regardless of the signal sender, this
time constraint is attached to whatever the triggered treatment. Therefore, in the example given in Figure
38, if the object whose behaviour is described receives a signal while it is in Standby state, it triggers the
startRegulation treatment with a relative deadline of 100 milliseconds. Since the absolute date serving as
a reference is not specified here, the absolute reference date used to compute the absolute deadline for
the triggered treatment will be that on which the signal is sent. In the same way, if the receiving object is
in InService state, reception of the same signal, OnOff_Reg, triggers stopRegulation treatment with a
relative constraint of 100 milliseconds in respect to the date on which the received OnOff_Reg signal
instance was sent.

Specification of a real-time constraint on the triggering-transitions of an object's behaviour does not in
any way hinder its being reused in a different context from that of this approach, i.e. real time objects. In
this case, the behaviour aspect specified by the triggering view is not, in fact, preserved.

StopCar/ destroy()

InService

OnOff_Reg / stopAcquisition()
{ RTF = (DateRef, Deadline(200, ms)) }

[¬ (Signal(OnOff_Reg)) ∧ ¬(Signal(StopAuto))]
 / acquireSpeed

StopCar/ destroy()

OnOff_Reg / startAcquisition()
{ RTF = (DateRef, Deadline(100, ms)) }

Stndby

Figure 77: Declaration of a Time Constraint Placed on a Triggering-Transition.

Remark: The position of a time constraint with respect to a signal (at output or reception) has definite
impact. Specifying the constraint at signal output means that, regardless of the sender, the object will
respond to that constraint. In the event of conflict, i.e. if a signal has two time constraints, one at output
and one at reception, the constraint specified at output takes priority. In this way, the client is kept firmly
"in the driver's seat".

Time Constraints and Cyclic Treatments

The second type of constraint relates to the cyclic performance of a treatment. As already shown in a
previous section (see section called Automatic Treatment Specification), a user may specify cyclic
treatments in the triggering automaton of a real time object. By attaching real-time constraints to the
cyclic treatments of an object, the designer can adjust the frequency of these treatments to make them
periodic. In the example taken here, two treatments are initiated automatically and performed cyclically:

− acquisition of data from the sensor simulator via the Speed class acquireSpeed operation;

− the control loop realized by the Regulator class.

Data acquisition from the sensor simulator takes place via the Speed class acquireSpeed operation. This
cyclic treatment is specified in the class triggering automaton. To clock the cycle, the user can add to
this model a tagged value {RTF}, that he then places on the completion transition associated with his
cyclic treatment ("completion transition"). To define the periodicity of the treatment, the tagged value has
a "Period"-type parameter that determines the value of the period and the unit of reference. The date of
achievement of whatever the state enabling cyclic triggering of the treatment defines the date on which

AIT-WOODDES Deliverable:

October 2001 M2/CEA/WP1.3/V2.1

Internal Page 83

the first cycle begins. The starting dates of subsequent cycles will be computed by shifting forward each
by the equivalent of the value of one period with respect to that of the immediately preceding cycle. By
default, the deadline for occurrence of a treatment is the starting date for the next occurrence. This is
referred to as "periodic treatment to deadline". Specification of the speed acquisition cycle at 2 Hertz is
thus expressed as follows (Figure 78) :

OnOff_Reg / startAcquisition()
Standby InService

OnOff_Reg / stopAcquisition()

[¬ (Signal(OnOff_Reg))
 ∧ ¬ (Signal(StopAuto))] / acquireSpeed

{ RTF = (DateRef, Period(500, ms)) }StopCar / destroy()

StopCar/ destroy()

Figure 78: Declaration of a Periodicity Constraint for Cyclic Treatment.

Remark: Use of a numerical real-time constraint value to specify a period limits the reusability and
modularity of the specified class. This is because, under such conditions, all instances of the Speed
class exhibit the same behaviour. In InService state, all Speed instances perform the acquireSpeed()
operation periodically, at a frequency of 10 Hertz. To alleviate this drawback, it is possible to use an
intermediate attribute of the Period type. If this is a class attribute, then the time constraint will be the
same for all instances. If not, the constraint may differ from one instance to another. For the Speed
class, an acquisition treatment period acquisitionPeriod can be specified (Figure 79) and this attribute
added to the structural definition of the class (Period-type with controlled access).

OnOff_Reg / startAcquisition()
Standby InService

OnOff_Reg / stopAcquisition()
[¬ (Signal(OnOff_Reg)) ∧ ¬ (Signal(StopCar))]

 / acquireSpeed
{ RTF = (DateRef, Period(acquisitionPeriod, ms)) }

StopCar / destroy()

StopCar / destroy()

Figure 79: Time Constraints and Attributes.

Finer timing distinctions can be made by setting a deadline for each occurrence that differs from the
starting date of the following occurrence. This can be done by simply including a second parameter in
the tagged value that determines duration, to specify the desired interval from the start of cycle one to
cycle one deadline. For example, if the user wants acquisition to take place less than 50 milliseconds
from the triggering of each cycle, the time constraint becomes: { RTF = (Deadline(50, ms), Period(500,
ms)) }. Finally, to specify an initial delay in the start of cycling treatment (valid for each occurrence), a
third parameter known as "Readytime" is added to the tagged value (Figure 80):

AIT-WOODDES Deliverable:

October 2001 M2/CEA/WP1.3/V2.1

Internal Page 84

{RTF = (Period(500))}

Date on which
InService state was

reached

{RTF = (Deadline(50), Period(500))}

{RTF = (Deadline(50), Period(500), Readytime(30))}
First occurrence Second occurrence

 to to+30 to+50 to+80 to+500 to+530 to+1000

t (ms)

…

to+550 to+580

Figure 80: Specification of Deadlines and Initial Time-Delays.

Note that the preliminary conditions attached to a cyclic transition implicitly set a periodic treatment stop
criterion. In the previous specification (Figure 78), the treatment is not re-initiated if an OnOff_Reg or
StopCar signal is received by the object. Three other types of stop criteria can be attached to a cyclic
treatment:

1. a maximum number of occurrences. For example, to limit cyclic treatment to a maximum of
1000 occurrences, the constraint is expressed in the following manner: { RTF = (DateRef,
Period(500, ms), OccNb(1000)) }

2. an overall deadline. For example, to limit cyclic treatment to a maximum of 10 seconds, the
constraint is expressed in the following manner: { RTF = (DateRef, Period(500, ms),
GlobDl(10)) }

3. a special hook function. The approach enables interruption in the period of a cyclic treatment
in dynamic mode. This means that, at the end of each occurrence in a periodic treatment,
the user can specify a call to a specific user operation. This operation must have a boolean-
type return value. If the result is true, periodic treatment continues, if not, it stops.

The specification of this method involves an additional RTF tagged value parameter,
continue(<userMethod>). The time constraint associated with the acquireSpeed service of the Speed
class triggering automaton thus becomes: {RTF=(DateRef, Deadline(100, ms), Period(500, ms),
continue(afterAcquisition) } where afterAcquisition is a Speed class operation with no parameter and a
boolean return value.

All of the above then leads to the following modelling rule:

Modelling rule 31 : Time constraint modelling consists of adding a special tagged value, RTF
(Real-Time Feature), in a UML constraint attached to an element of the application model. This
tagged value can be attached to Action-type model elements, either explicitly by the user or
implicitly by the development environment, for operation call or signal sending actions (CallAction,
SignalAction). The tagged value may have several time parameters:

{RTF = (DateRef, Deadline(xxx, ms), Readytime(xxx, ms),

 Period(xxx, ms), NbPeriod(xxx), continue(<useOperation>)}

AIT-WOODDES Deliverable:

October 2001 M2/CEA/WP1.3/V2.1

Internal Page 85

where :

− Deadline is a parameter specifying the deadline for the request;

− Readytime specifies the starting date for the request;

− Period assigns a periodic constraint to a request;

− NbPeriod specifies the maximum number of periods for a periodic request;

− continue(<userOperation>) contains the specification of an operation, <userOperation>, which is
invoked at the end of each treatment where so specified. By default, this parameter is NULL. Its
prototype takes the boolean form <userOperation>().

Remark: The parameters Deadline and Readytime are relative dates based on an absolute date,
which is also contained in the message received by the called object. By default, this date
corresponds to the date on which the message was created.

In some cases where the real time characteristic assigned to a treatment is a deadline, it may happen
that a treatment is not fully completed when the time limit expires. To deal with this type of situation, one
enables specification of a particular user treatment for timeouts. This is not achieve automatic treatment,
such as task deletion, which would be difficult to obtain from outside the task context, while execution is
underway. It is impossible, for example to know what resources are being used by that task and must
therefore be freed or which attributes have been modified by it and need to be restored as they were prior
to method execution. For this reason, one entrusts the user with the responsibility for specifying his own
treatments in the event a deadline is overrun. To specify a special "timeout" treatment for a service, the
user must add to the tagged value {RTF} previously attached to that service an abort(<userOperation>)
parameter. The user method <userOperation>, which calculates the abort criterion, has a boolean-type
return parameter. If this parameter evaluates true, then treatment of the service underway must be
aborted; otherwise it continues. Where the user does not provide timeout specifications for a request, the
timeout will be treated by default.

Specification of Execution Times for Methods

For class methods, one introduces an additional tagged value enabling specification of an important time
characteristic, WCET incr , which serves to increase the WCET (Worst Case Execution Time) [22] [23].
To specify this new concept, one proposes a tagged value { WCET = param }, in which param is the
value of maximum execution time. The tagged value is added to methods specifications in the structural
diagram for application classes (Figure 81). This time constraint is in fact a property of methods on which
users cannot act. It is therefore attached to the object class that supports the operation. Specification of
this time characteristic is useful for the validation of application scheduling properties.

 "RealTimeObject"

- value: integer

Speedometer

spdom
0..1

Speed

aquireSpeed() {WCET=10 ms}
+ giveSpeed():integer {WCET=2 ms}
+ startAcquisition() {WCET=10 ms}
+ stopAcquisition() {WCET=15 ms}
+ convertSpeed (sp) :integer {WCET=3 ms}

Figure 81: WCET Specification for a Method.

AIT-WOODDES Deliverable:

October 2001 M2/CEA/WP1.3/V2.1

Internal Page 86

2.2.3.6 Consistency rules

Previously, one defined a set of rules for maintaining consistency between the parameters and events
received by an object and the parameters of operations triggered by such receipt. The following pages
are devoted to the modelling rules required to ensure the consistency of transition specifications in
behaviour automatons with various aspects of the structural model.

Protocol-transitions have the following syntax: <triggerEvt> [‘guard’].

The trigger event required here is the CallEvent type and the operation attached to this event must belong
to the interface of the class defining the protocol view context. If the specified transition causes a change
in state, then the operation attached to the call cannot be specified as a read-type or parallel one.

Modelling rule 32 : Protocol-transitions causing a change in state must not be associated with
an operation declared to be the read25 or parallel26 type in the structural specification of the class
defining the automaton context.

According to subsection 0, the syntax of a triggering-transition is: <triggerEvt> [‘guard’] /
calledOpe(‘params’).

The lefthand portion of a triggering transition specification contains a single trigger event and the
righthand portion a single action. The triggering view of an automaton allows for trigger events of the
ChangeEvent, TimeEvent, CompletionEvent or SignalEvent kind. In the case of a SignalEvent, the type
of signal linked to the triggering-transition trigger event must be included in the application's structural
model as one of the signal types that the class is capable of receiving. The class must therefore specify
a reception designating this type of signal.

Finally, if the source state of a triggering-transition differs from its target state, then the operation
attached to the operation call action cannot be specified as "read" or "parallel".

Modelling rule 33 : If the trigger event of a triggering-transition is the SignalEvent type, then the
class defining the automaton context of this view must include in its interface definition a reception27
designating such a signal. In addition, the action specified on the righthand side of the transition
must be the (CallAction) type and the operation associated with this action must be an operation of
the class that defines the automaton context. Finally, if the transition causes a change in object
state, the operation called during triggering-transition firing must not be declared as a read or parallel
type.

A signal with parameters may have in its specification (section 2.2.2.4) a list of attributes defining the
parameters it is capable of carrying. In cases where the signal associated with a signal event has
attributes in its specification, the signal receiver has the right to use it. However, a same signal may be

25 A read-type operation is one which has the tagged value {concurrencyMode=reader}.
26 A parallel operation has the tagged value {concurrencyMode=parallel}.
27 A reception is the specification, in the structural model of a class, that said class is capable of handling a

given type of signal.

AIT-WOODDES Deliverable:

October 2001 M2/CEA/WP1.3/V2.1

Internal Page 87

sent in different ways by different instances of different classes; and the only data available to the signal
receiving instance is the signal specification. A receiving instance cannot, therefore, know if a signal was
sent with or without parameters, even where its specification contains attributes. To solve this problem, it
was decided to require all signal attributes to have a default value (Modelling rule 13 :). To comply with
this rule, a received signal type event with parameters must always be accompanied by a list of
parameters corresponding to the list of attributes specified for the received signal. This implies that the
event generated by signal receipt will have as many parameters as the signal has attributes and the type
of the ith parameter will be identical to that of the ith attribute of the classifier specifying the type of signal
received, for an i value ranging from 1 to the number of signal parameters (Figure 82).

a1 : Type_1

an : Type_n

S1 S2

Signal

…

Signal(, …,) / …pn : Type_np1 : Type_1

Figure 82: Relationship between a Signal Event and the Associated Signal Specification

Modelling rule 34 : The signature of a signal receipt type event specified on the left-hand side of
a triggering-transition must be consistent with the classifier specification defining the signal
associated with the signal event received. Therefore, considering that classifier attributes specifying
the signal are contained in an ordered list (ai)i∈[1..n] and that the parameter list for the event generated
by received of this signal is (pj)j∈[1..m], then:

− n=m ;

− ∀ i∈[1..n], ai and pi are of a same type and cardinality.

2.2.3.7 Summary

This chapter described various aspects of the method for building a behaviour submodel. In doing so, it
provided answers to two important questions:

− How can UML state diagrams be used to describe the behaviour of real time objects without
jeopardizing the object-oriented viewpoint inherent in this approach?

− How are real-time constraints included in the behaviour model?

State diagrams are used at two different levels of granularity to build the behaviour model of an
application (Figure 83) :

− Class behaviour is described by a restricted and specialized form of state diagram. This
specialization is essentially founded on the same principle as a UML protocol-type state machine.

− Operations behaviour (TBD).

AIT-WOODDES Deliverable:

October 2001 M2/CEA/WP1.3/V2.1

Internal Page 88

Class

m1()

S 1

S 2

m1()

m1()

Class Structure Class Behaviour Operations Behaviour
 (Logic behaviour) (Algorithms)

Figure 83: Use of UML State Diagrams at Different Levels of Granularity.

The section was therefore concerned with how to model the classes behaviour of an application. This is
achieved by breakdown of the class behaviour into two automaton views, the protocol view and the
triggering view. These views are special projections (or abstraction) of a same state machine describing
the overall behaviour of a class:

− the protocol view contains a description of class response to operation call-type operations. It is also
known as the object "life cycle";

− the triggering view focuses on the reactivity of class behaviour. It describes class response to signal
sending-type messages, but also to automatic class behaviours or those deriving from a given
boolean condition.

A set of rules was also provided for constructing these two views of object behaviour and for maintaining
consistency between them as well as between the behaviour and the structural models.

The chapter likewise compares execution semantics for real time object-based behaviour models with
those of standard UML models. More specifically, it explains how the basic "run-to-completion"
assumption made for UML state machine semantics is supplemented, to enable correct, accurate use of
UML protocol state machines in a real time object context.

Finally, the preceding pages also set forth modelling rules for specification of class operations and time
constraints in the behaviour model.

The behaviour of a real time object class can be considered as a state machine having several orthogonal
regions: A main region describing the global behaviour of the class can be observed from two different,
complementary viewpoints and others specifying class operations behaviour. The result of this
specification for the Regulator class of the example used in this document is given in Figure 84.

AIT-WOODDES Deliverable:

October 2001 M2/CEA/WP1.3/V2.1

Internal Page 89

 Regulator_behavior

startRegulation() [V ≥ 50]

stopRegulation() destroy()

create()
In Service

destroy()

maintainSpeed()

[¬ (isEvent(OnOff_Reg)) ∧ ¬ (isEvent(StopCar))
 ∧ ¬ (isEvent(stopRegulation)) ∧ (actSpd ≥ 50)]

 / maintainSpeed() ;
{ RTF = (DateRef, Period (acquisitionPeriod , ms)) }

StopCar / destroy()

StopCar
/ destroy()

Halted

OnOff_Reg [vitReel ≥ 50] /

OnOff_Reg / stopRegulation()
[actSpd < 50] / stopRegulation()

stopRegulation
(TBD)

startRegulation
(TBD)

maintainSpeed
(TBD)

Figure 84: Complete Specification of Regulator Class Global Behaviour.

If Regulator class behaviour had been modelled using a standard object-oriented approach, the state
machine specification would have been approximately as shown in Figure 85.

[actSpd < 50] / stopRegulation()
/ display → incrDisplay("Off");

Regulator_Behavior

tm(500) / actSpd=spdReading→ giveSpeed();
 deltaC = k1 * atan (targetSpd - actSpd) ;
 eng → controlActuator(deltaC) ;

startRegulation() [V ≥ 50]
/ targetSpd =actSpd→ giveSpeed();
 display → incrSpeed("On") ;

stopRegulation() / display → incrDisplay("Off");

create()

StopCar / destroy()

StopCar
/ destroy()

Halted InService

Figure 85: Specification of Regulator Behaviour using a Standard Object-Oriented Approach.

Clearly, the main drawback of approaches that specify all object behaviour by means of a same, single
model is a destructured object paradigm. In the state machine depicted in Figure 85, both Regulator
control logic and its algorithmic specification are given in the same state diagram. Under these
conditions, it is very difficult, for example, to take advantage of inheritance characteristics deriving from
the object paradigm. In such cases, implementation of Regulator class operations (startRegulation,
stopRegulation, etc.) is also often coded over several transitions. This characteristic then makes it
difficult to reuse inherited operations, may generate excess activity and encourages users to construct
highly complex state diagrams that quickly become hard to maintain.

The approach presented here to modelling class behaviour does not have these drawbacks for the object
paradigm. In the first place, control logic and specification of algorithms are separate. It is thus easier,
both to reuse classes and to ensure application maintenance. Secondly, because an operation is not
implemented over the multiple transitions of a behaviour automaton, it is also easier to reuse inherited
transitions in child classes. If, for example, the Regulator class is specialized to modify the speed

AIT-WOODDES Deliverable:

October 2001 M2/CEA/WP1.3/V2.1

Internal Page 90

control equation, since said equation is contained in the operation maintainSpeed, this operation can be
simply overwritten to redefine its behaviour specification.

The same approach enables a client to reuse existing code outside this context, i.e. without referencing
real time objects. A class that inherits operations from a class in another code can thus easily use these
operations in a description of its own control logic. The difference between an inherited operation and one
proper to the child class is that the implementation model for an inherited operation does not specify
behaviour as an orthogonal region in the overall description of child class behaviour.

2.2.4 Activity – “describe interactions view”

In the various object-oriented approaches [5], [6], [24], sequence diagrams are generally used for the
purpose of illustrating specific problems:

− Their first role is often to facilitate communication among the various partners in a project. All of these
"players" (from the system developer to its user) are familiar with such diagrams, whose intuitive-type
representation capability makes them a powerful communications tool. Sequence diagrams can thus
alleviate modelling errors that may otherwise arise from misunderstandings among project
participants, even at the predevelopment stage.

− In the course of application development, they also serve to model system interactions. As such,
they are a practical, effective means for identifying object concepts (e.g. new classes or operations).
Their level of granularity (or of detail) varies according to the phase in which they are implemented.

− Finally, once detailed system design has been determined, sequence diagrams can be used to
illustrate significant aspects of application behaviour, thus providing a basis for subsequent testing
and validation.

In all cases, these diagrams tend to act as informal specifications [25]; and it is not uncommon, at
advanced stages in development, for information given in diagrams at a high level in this process (e.g.
between preliminary and detailed analysis), to disappear. One therefore sees them as more formal, albeit
incomplete, specifications, that define the behaviour required by the application. This means that a
sequence diagram specified at the preliminary analysis stage will be reviewed, corrected and updated as
part of an ongoing process of model refinement, until the system implementation model is finalized. The
elements of a sequence diagram serve in fact as a basis of reference for elements identified in other
facets of the modelling process. More specifically, they make use of object and message concepts that
are closely linked to other important notions – i.e. class, operation or signal. This is why each of the
elements identified in them must be consistent and in harmony with the specifications of other modelling
diagrams (state and class diagrams).

The following paragraphs describes the different step that contribute to the “describe interactions view”
activity. Indeed, as depicted in , this latter is split in three steps (Figure 86):

• The “build scenario basis” step aims at building the model basis for the interactions model. This
one is then detailed/refined in the following step.

• The “refine scenario” step aims at detailing the application scenario. The output of this step is the
work product Detailed Scenarios Model.

• The “declare real-time property” step consists in declaring real-time QoS on messages
exchanged in sequence diagram to perform a given function.

AIT-WOODDES Deliverable:

October 2001 M2/CEA/WP1.3/V2.1

Internal Page 91

• The “organize scenarios” step aims at giving an overview of the dependencies existing between
the different scenarios identified in the model. For that purpose the analyst builds activity diagrams.

Detailed Requirements Analyst

{until all requirements has been detailed}

build scenario basis

refine scenario

Detailed Scenarios Model
declare real -time property

Structural Model

 B A

C

BehaviouralModel

organize scenarios

Figure 86: Activity – the “describe interactions view” Activity of the AIT-WOODDES Methodology.

The “Detailed Scenarios Model” work product is described through a set of two kind of diagrams. First of
all, it is a set of sequence diagrams that depict a message sequence exchanged between instances of
domain application classes in order to perform a given function (modelled by an interaction in the model).
But the detailed scenarios model may also be composed by a set of specific activity diagrams construct
during the “organize scenario” step.

Detailed Scenarios Model

describedBy

*
Sequence Diagram

describedBy

*
Ordered Sequences Diagram
Diagram

referTo *

1

Message

involved *

Domain Instances

*

exchanged *

1

RTF

required 1

Figure 87: The “Detailed Scenarios Model” Work Product.

AIT-WOODDES Deliverable:

October 2001 M2/CEA/WP1.3/V2.1

Internal Page 92

2.2.4.1 Step – “build scenario basis”

The purpose of this development step is to build the basis sequence diagrams that will then be detailed
and refined iteratively in the step “refine scenario” until achievement of the “build detailed analysis model“
activity.

The main point is that the interactions model …

2.2.4.2 Step – “refine scenario”

In order to well-suite the method, some sequence adaptation has been proposed. These one are
presented in the following paragraphs, using examples of diagrams excerpted from speed regulator
models. These illustrations serve as a pretext for closer study of sequence diagram refinement and the
potential impact of the modifying them, on other (structural and behaviour) models.

Message specification in a UML sequence diagram must always explicitly include its sender and its
receiver.

The proposed method calls for amending this rule in two types of situations:

− where specification of a particular message sequence is required in response to operation call-type
events;

− for sequence diagram modelling of sending and receiving specialized signal-type communications.

A sequence diagram models the message sequences exchanged for the purpose of performing a given
task. This means that, depending on the level of granularity or detail and the scope of the project, such a
diagram may rapidly become too large and complex and thus involve large numbers of objects and/or
messages. To limit such complexity and enhance readability, one enables factorisation and abstraction
of certain parts of a sequence diagram, by allowing an object to receive an operation call without
specification of the sender. In this case, only the event-aspect of the message is modelled, i.e. the
interaction triggered by the call to a specific object.

Modelling rule 35 : In a sequence diagram, it is possible to refer to a more detailed description
of a specific interaction message in another sequence diagram. To do so:

− the name of the message of interest is preceded by an asterisk written as a superscript;

− the message is linked to the new interaction (represented by the additional diagram) through an
abstraction relationship28 with a "refine" stereotype, oriented from the message to the interaction;

− the sequence diagram associated with the message refinement interaction, is assigned the same
name as the message of interest, together with a postfix in the form of a number, if more than one case
is possible. Additionally, where several refinements are available, the various abstraction relationships
between the message and the interactions must be mutually exclusive.

28 An abstraction (Abstraction meta class) is a dependency relationship that relates a set of elements (at

least two) representing the same concept at different levels of abstraction or from different viewpoints. The

"refine" stereotype signfies that the target element or set of elements in the relationship is a refinement of the

source element; or, conversely, that the source element is an abstraction of one or more target elements.

AIT-WOODDES Deliverable:

October 2001 M2/CEA/WP1.3/V2.1

Internal Page 93

The following pages provide illustration of two situations to which this modelling rule applies. The first
involves factorising a part of a sequence that repeats itself several times in a same diagram; and the
second example demonstrates the usefulness of this rule for enriching part of the diagram without
overloading it.

Figure 88 shows a sequence diagram for an interaction sequence with two identical parts.

s1 : S

ma(a : integer)

ma(a : integer)

s2 : Sc : ConeActor

ms() m2()

f1 : F

m1()

f1 : F

m1()

%

%

Figure 88: Simplification of a Sequence Diagram 1/3.

It is thus possible to factorise these two parts of sequence by cutting the sequence diagram in Figure 88
along the dotted lines marked with an icon in the form of a scissors (this results in the simpler sequence
diagram shown in Figure 89).

*

s1 : S

ma(a : integer)

ma(a : integer)

s2 : Sc : ConeActor

ms() m2()

*

Message with a higher level of descriptive detail
une description plus détaillée

Figure 89: Simplification of a Sequence Diagram 2/3.

The next step is to add another sequence diagram (Figure 90) that details the effect of message ma().
Message ma() can also be considered as an abstraction of the interaction described by the sequence
diagram in Figure 90.

s1 : S

ma(a : integer)

f1 : F

m1()

Figure 90: Simplification of a Sequence Diagram 3/3.

AIT-WOODDES Deliverable:

October 2001 M2/CEA/WP1.3/V2.1

Internal Page 94

The notation used for UML sequence diagrams has been incremented for a second type of situation: a
specific type of communication by signal, i.e. broadcasting. This specialized communication mode has
the following main properties:

− it enables sending a signal without mandatory knowledge of its potential receivers;

− the signal can be received without mandatory knowledge of the sender by all of the instances of each
class that have been declared receptive to this type of signal (see section 2.2.2.4).

To enhance representation of signal-type communication characteristics, one provides two new
sequence diagram notation features. These features relate to modelling of signal sending and receiving.
Sending is depicted by an arrow whose arrowhead points from the action generating the signal to an icon
symbolizing a flash of lightning. Its label is the name of the type of signal sent (see Figure 91). It may
also have a list of signal initialisation parameters.

 s tr t :EngineStarter aReg :Regulator

S t o p C a r

StopCar

s topRegulat ion()

Figure 91: Depiction of Signal Sending and Receiving in a Sequence Diagram

Signal receipt is modelled by an arrow that points from the "flash" icon to the life line of the receiver
object. It is also labelled with the type of received signal and a list of the parameters carried. In a
sequence diagram, signal receipt may result in execution of a treatment by the explicit receiver object. In
the example shown in Figure 91, receipt of the StopCar signal by the aReg instance of Regulator triggers
execution of the stopRegulation operation.

2.2.4.3 step – “declare real-time property”

As already seen in previous chapters, in an ACCORD/UML real time object model, the notion of time is
attached to the messages exchanged by objects and not to the objects themselves. In addition,
messages can be divided into two main families: operation call-type messages and signal-type
messages. Time constraints for a given message may then be specified in either of two ways:

1. if the message is associated with a signal, the real-time constraint is attached to either signal output
or signal reception (Figure 92). In the first case, each treatment activated in the various objects
receiving the signal is subject to the constraint associated with that signal; and each treatment
involves the same constraint, as determined by the sender. In this mode, the client can impose his
time constraints. In the second mode, where real-time constraint is a signal reception characteristic,
each action triggered by the incoming signal is subject to the constraint associated with the
receiving context. In this case, the constraints imposed on treatments are those set by the
receivers.

AIT-WOODDES Deliverable:

October 2001 M2/CEA/WP1.3/V2.1

Internal Page 95

str t : Engine Starter unReg :Regula tor

StopCar
{ RTF = (DateRef ,

Deadlinel(1,s))
}

stopRegulat ion()
S t o p C a r

{ RTF = (DateRef ,
Deadlinel(1,s)) }T i m e

const ra int
a t ou tpu t
outputl’ém

T i m e
constraint a t
reception

Figure 92: Time Constraints and Signals in a Sequence Diagram.

2. if the message is associated with an operation, the time constraint is again imposed by the
message sender (Figure 93). To model this, the user adds a UML constraint containing an RTF-type
tagged value with whatever the desired time constraint parameters.

 aReg :Regulateur cntreq:control
equation

calculateTorque()

{ RTF = (DateRef,
Deadlinel(10, ms)) }

Figure 93: Time Constraint and Operation Call in a Sequence Diagram

The case of messages sent with a periodic time constraint requires special attention: under such
conditions, it must be clear that the message, signal or operation call is not sent periodically by the
sending object; instead, it is the treatment triggered in the receiver that takes place periodically (Figure
94).

unReg :Regulator actSpd:Speed

startAcquisition()

{ RTF = (DateRef,
Deadlinel(1,s),
Period(1,Hz)) }

startAcquisition()

unReg :Regulator actSpd:Speed

startAcquisition()

startAcquisition()

…

1s
1s
1s…

Figure 94: Message with Periodic Real-Time Constraint.

Remark: To model a time constraint in a sequence diagram, UML proposes message tagging and use of
specific time functions (such, for example, as receiveTime, sendTime, etc.) to express message time
characteristics for the constraints shown in brackets. One also allows this type of time specification, but,
in order to maintain a uniform approach, introduces an equivalent, RTF-type time constraint.

2.2.4.4 step – “organize scenarios”

2.2.4.5 Consistency rules

As already seen above, the global model of an application is a consistent whole made up of three
subcomponents: the structural model, the behaviour model and the interaction model. Note that the
intersections of concepts manipulated in each of these subcomponents are never empty. The notion of
operation, for example, is present in one form or another, in each of the submodels making up the global

AIT-WOODDES Deliverable:

October 2001 M2/CEA/WP1.3/V2.1

Internal Page 96

model. Since one of the main objectives of the ACCORD/UML approach is to obtain uniform, consistent
models, it seems vital to provide a set of rules ensuring that these two requirements – consistency and
uniformity – are met. The following paragraphs describe rules set for certain key situations where these
two characteristics are important:

1. interactions between the names of objects manipulated in the diagrams and structural
characteristics such as the names of association roles;

2. interactions between sequence diagram messages and operation and signal concepts as they are
used in the class diagrams;

3. finally, interactions between specifications of messages received by an object in a sequence
diagram and its own behaviour specification (via a state machine).

Interactions between Object Names and Association Role Names

Objects are named from the standpoint of the object using them. Their own names may thus differ from
those given to the roles that (implicitly) represent the relevant structural model instances. An object
name must, however, remain valid within the context of the user object (and not generate conflicts with
the the latter's characteristics or the names of its attributes, roles or operations).

Modelling rule 36 : In a sequence diagram, the names of manipulated objects must not interfere
with the name of an attribute or operation of the user object class (or with a name inherited from an
object ancestor class).

Modelling rule 37 : In a sequence diagram, if the name of an object:

• is the name given to a user object class or to an ancestor class of the user object, then:

− if the cardinality associated with a role is 1 or less, the used object corresponds to this
role;

− if not, for a link to exist between the object referenced by a role in the class diagram and
the object used in the sequence diagram, the name given to the object in the sequence
diagram must be the name of the role plus an index designating a specific object in set
of objects then referenced by the class diagram role.

• is the name of a global application object29, then:

− the object used corresponds to this object;

− otherwise, the object used is a local instance of the user object operation from which the
sent messages originated. In the latter case, the instance used must carry the
{transient} constraint.

29 Although somewhat "out-of-phase" with object philosophy, it is possible, in UML, to create "global

application objects", i.e. objects usable by all; thus this additional rule.

AIT-WOODDES Deliverable:

October 2001 M2/CEA/WP1.3/V2.1

Internal Page 97

Another rule, intended to guarantee modularity and to comply with the philosophy of object-oriented
methods, calls for an object using another object to always do so in compliance with the relationships
specified in the application's structural model. In particular, in a sequence diagram, an instance is not
authorized to send operation call-type messages to instances with which it has no relationships or, if it
does, where such relationships are not oriented in the right direction.

Contro lEquat ion

 "Rea l Time Objec t"
 S p e e d

ac tSpd 1

 "Real Time Object"
Regulator

 cntreq

1 . .*

ac tSpd

0 . .1

 "Real Time Object"
Obstac leDetector

 ac tualSpeed

0..1

Figure 95: Example of a Structural Constraint for Sequence Diagram Expression.

With respect to the previous class diagram, the following sequence diagram (Figure 96) is valid. The
aReg instance of Regulator is authorized to send a message to the cntreq instance of ControlEquation,
since the Regulator class has an association relationship oriented toward the ControlEquation.

ctreq : ControlEquationunReg : Regulator

Figure 96: Valid Use of an Object by Another in a Scenario.

By contrast, the next two cases (Figure 97) are not valid for the previous structural model (Figure 95). In
the lefthand diagram, the reason is the unsuitable orientation of the association, from Regulator to
ControlEquation (it should have been the opposite). In the other case, lack of an association relationship
between Regulator and ObstacleDetector invalidates the model.

ctreq : ControlEquationunReg : Regulator det : ObstacleDetectorunReg : Regulator

Figure 97: Two Invalid Uses of Objects in Interaction Scenarios.

Modelling rule 38 : In a sequence diagram, an object a (instance of class A) can dispatch an
operation call-type message m to an object b (instance of class B) if:

− b is a local object whose action, performed by a, generates the message. In this case, the
{transient}30 constraint is attached to b. This implies that all predecessors of m sent by the same
action (or a parent action) must contain an instance creation-type message sent to A. Instance b is
implicitly destroyed when the action executed by a and generating the b creation action has
completed. Moreover, class A must be connected to class B via a usage relationship denoted as

AIT-WOODDES Deliverable:

October 2001 M2/CEA/WP1.3/V2.1

Internal Page 98

("use");

− b is a global application object. In this case, there is a sequence containing a global object b
creation message and this sequence must have a priority constraint over the message m sending
sequence;

− b is an attribute-link31 of a. In this case, b can receive only operation call-type messages
originating from a ;

− b is an instance referenced by a link32 connecting a and b. In this case, classes A and B are
connected by an association relationship oriented from A to B, with a cardinality of at least 1.
Moreover, to instantiate the association linking A to B (i.e. to create a link between a and b), there
must be an interaction containing a message sent by a. This message must have a priority
constraint over m.

Interactions between Sequence Diagrams and Class Diagrams

It should first be emphasized that, to ensure global consistency with the Real Time Object approach,
when a sequence diagram uses an asynchronous message sending mode, the receiving object must be
one of the application's real time objects. Otherwise this type of communication cannot take place and
makes the specification incompatible. To process an asynchronous message, at least one processing
resource must be available independently from the sender. This means to be a Real Time Object. Thus
the conclusion that only real time objects can receive signals. In the same way, only a real time object is
capable of processing asynchronous operation calls.

Modelling rule 39 : In a sequence diagram, an object receiving an asynchronous message,
whether an operation call or signal, must be a Real Time Object-type class.

A message can be said to have two viewpoints, that of the sender and that of the receiver. On the
receiver side, the received message is perceived as an event, which may take the form of either a signal
(SignalEvent) or an operation call (CallEvent).

A message in the form of a signal implies that the receiving object class previously declared its
receptivity to this type of signal.

30This constraint means that the instance is created and destroyed in the course of the same action.

31An attribute-link, meta class AttributeLink, represents a link oriented in the direction of the instance which
holds the value of the object attribute.

32A link, meta class Link, is an instance of an association between two classes. It represents a connection
between two instances of the application classes linked by the association.

AIT-WOODDES Deliverable:

October 2001 M2/CEA/WP1.3/V2.1

Internal Page 99

Modelling rule 40 : In a sequence diagram, if an object receives a message in the form of a
signal, then the class of which it is an instance must have a reception associated with this type of
signal.

A message in the form of an operation call implies that the object is capable of receiving this type of
message. The class from which it was instantiated must therefore have previously declared itself capable
of processing the message. To do so, the operation attached to the message must belong to the set of
messages declared in the object class interface.

Modelling rule 41 : In a sequence diagram, an object receiving a message associated with an
operation must be an instance of a class whose specification includes this operation with a visibility
level compatible with the sender33.

The diagram in Figure 14 illustrates the preceding rule.

StopCar
stopRegulation()

RegulatorStopCar

+ stopRegulation()

unReg:Regulator

OK

Figure 98: Consistency between Messages and Class Interfaces.

Interactions between Sequence Diagrams and Object Behaviour

As already seen above, the behaviour of an object is described by a state diagram. This diagram is made
up of states and the transitions connecting them. The specification of a transition contains a transition
trigger which may, among others, be an event characterized by receipt of either a signal or an operation
call. While a sequence diagram essentially provides a global view of a system, it can also be considered
from the standpoint of a specific object and, above all, of the messages it receives. These are perceived
by the object as events. If a sequence diagram has more detailed specifications, such, for example, as
states before and after a message-triggered event, the message received by an object must be
consistent with the events that trigger the behaviour transitions of the class from which the object was
instantiated. The following rule is intended to ensure such consistency:

33 which may be:

 public, protected or private, if the sender is an instance of the same type;

public or protected, if it is the descendant type;

otherwise public.

AIT-WOODDES Deliverable:

October 2001 M2/CEA/WP1.3/V2.1

Internal Page 100

Modelling rule 42 : If, in a sequence diagram, the state of an object when it receives a message
is specified, the state diagram describing that object's behaviour must also own the state
corresponding to this condition. Moreover, this state must own at least one outgoing transition whose
trigger is consistent with the message received by the object in the sequence diagram.

Moreover, if, in the sequence diagram, the treatment of a message owns specifications of the states
before and after the event, then the state transition of the object processing the message must have
at least one transition whose source state is the state prior to message receipt and whose target
state is the post-message processing state. If there is also a guard condition for message receipt
processing, then this condition must be compatible with one of the transitions complying with the
previous modelling rule.

This rule ensures that the state diagram specifying the behaviour of a class will enable its future
instances to perform their potential roles in the sequence diagrams in which they are present. The aim
here is to ensure the consistency of object global behaviour as specified in its class state diagram with
the specific behaviours required of it in the various sequence diagrams.

As shown in Figure 99, for Regulator class object aReg, the state of the object is specified for each
treatment. This includes its state before receiving the message and that reached after message
processing. To specify this characteristic, an additional notation point has been introduced into the UML
sequence diagram. This includes the name of the pre- and post-treatment states in a textual note
containing the name in brackets ([state-name]). As part of a current review of UML, the possibility of
adding the notion of "state" to sequence diagram specifications and in message sequence charts
(MSCs) is being examined [26]. One noteworthy proposal for extending the standard sequence diagram
is Harel's "Live Sequence Chart" (LSC), [27].

[V≥50] startRegulation()

{RTC=(dl(1,s))}

setDemandSpeed()

aReg :Regulator ctreq: ControlEquation actSpd : Speed actSpd :Speedometer

acquerirVitesse() {RTC=(dl(500,ms),p(2,Hz))}
giveSpeed()

initialize()

giveSpeed()

maintainSpeed ()
{RTC=(dl(500,ms),p(2,Hz))}

[Halted

[InService]
[InService]

[InService]

Figure 99: Sequence Diagram Describing Regulation System Startup.

In the Halted state, the aReg object starts periodic vehicle speed acquisition via the message
acquireSpeed sent to the carSpd object with the following constraints: deadline ½ second and period ½
second. Then it initializes the contreq object and, once this has been achieved, launches the "maintain
vehicle speed", also with a time constraint of ½ s deadline and ½ s period). At the end of this treatment,

AIT-WOODDES Deliverable:

October 2001 M2/CEA/WP1.3/V2.1

Internal Page 101

the object reaches InService state. It can thus be concluded that the Regulator behaviour diagram must
have at least two states – InService and Halted. Additionally, the Halted state must have at least one
outgoing transition whose trigger event is startRegulation and whose target state is InService. Because
the maintainSpeed message is dispatched with a periodic time constraint, it is also periodically re-
initiated in the InService state. The InService state must therefore have at least one outgoing transition
whose trigger event is maintainSpeed and whose target state remains InService. The mention "at least
one outgoing transition" refers to the fact that a same state can have several outgoing transitions with the
same trigger event insofar as they have different guards enabling these transitions to be mutually
exclusive. Thus, if the guard condition [V≥50] is added to treatment of the startRegulation message, the
consistency relationship between the sequence diagram in Figure 99 and the Regulator class sequence
diagram becomes the following: the Regulator class behaviour diagram must have at least the two states
InService and Halted. In addition, the Halted state must have one outgoing transition that is triggered by
receipt of the startRegulation event accepting the [V≥50] condition for actual vehicle speed: (Figure 100).

Halted

OnOff_Reg [V≥50] / startRegulation()

OnOff_Reg / stopRegulation()

StopCar/destroy()

StopCar/destroy()

startRegulation () [V≥50]

stopRegulation ()

destroy()

create()

destroy()

InService

maintainSpeed()

startRegulation() [V≥50]
InServiceHalted

maintainSpeed()

(is contained in)

Figure 100: Sequence Diagram Constraints Transferred to the Regulator Global Behaviour Specification.

Interactions between Sequence Diagram and Operation Behaviour

It is possible to view sequence diagrams from yet a different perspective. Rather than seeing it as a set
of instances cooperating with each other to perform a given task, the focus can be placed on a specific
interacting object. The focus point then becomes the behaviour of a given object in realizing a particular
sequence. Attention centers specifically on the sequence realized by the object following receipt of a
message. This approach has two different objectives: to automatically generate part of class operation
behaviour ([25]) or to verify that application behaviour enables a object to perform the roles assigned to it
in the different sequence diagrams making up the interaction model.

Here, the principle is to isolate, for each object involved in the sequence diagram, each message
received by that object, and to build a message sequence made up of messages sent by the object in
response to trigger message receipt. The following rule can then be applied to this sequence:

AIT-WOODDES Deliverable:

October 2001 M2/CEA/WP1.3/V2.1

Internal Page 102

Modelling rule 43 : For any sequence, if the trigger message is an operation call, specification
of operation behaviour must contain a path including the message sequence initiated by message
receipt in the sequence diagram. If the message is linked to a signal, message receipt is perceived
as a signal-type event that triggers execution of an operation. The preceding case then likewise
applies.

2.2.4.6 Summary

This chapter described various aspects of the method for building an interaction submodel. The submodel
is based exclusively on UML sequence diagrams. Technical points highlighted in this chapter were the
following:

− proposed additional sequence diagram notation for modelling of specialized signal-type
communications and factorising some parts of a sequence diagram;

− real-time features description in the sequence diagrams using the tagged value RTF (Real Time
Feature);

− consistency rules between interaction model sequence diagrams and structural model class
diagrams;

− consistency rules between the sequence diagrams and behaviour model state diagrams.

AIT-WOODDES Deliverable:

October 2001 M2/CEA/WP1.3/V2.1

Internal Page 103

AIT-WOODDES Deliverable:

October 2001 M2/CEA/WP1.3/V2.1

Internal Page 104

3 PHASE – “BUILD DESIGN MODEL”

The goal of the design phase is to choose a single “optimal” solution for the system described in the
analysis. [9] It identifies things such as concurrency models (which objects are active), scheduling
policies, organization of software elements within deployable components, inter-processor
communications, error-handling policies, etc.

3.1 Using UML for design

The following is based on two well-known processes:

1 - The Unified Software Development Process (RUP).

2 - Rapid Object-Oriented Process for Embedded Systems (ROPES).

RUP is probably the most well known process for developing o-o application using UML. It is a generic,

well-organized34 iterative process that relies heavily on UML semantics and notations. However, RUP
does not address embedded\real-time issues at all.

ROPES is also an iterative process that uses UML, which is similar to RUP in many ways. However, the
entire focus of this process is real-time embedded systems, which RUP misses for our point of view.

The specification of the design process is specified in the following order: artifacts, roles (workers),
phases and activities.

3.1.1 Artifacts

The term artifact refers to concrete, tangible model entities that are being manipulated by role-players (or
workers) during their workflows. An artifact may be an input or an output to a workflow.

Figure 101 and Figure 102 specify the design artifacts and their relations. This section defines the
artifacts of the Design Model. The way to produce the artifacts and the role players that produce them
are described in the subsequent two sections.

34 By well organized we mean that it is consistently organized around roles\workers, activities and artifacts.

Thus complies with OMG “Unified Process Model (UPM)” that defines the same structure for all processes.

AIT-WOODDES Deliverable:

October 2001 M2/CEA/WP1.3/V2.1

Internal Page 105

Figure 101: Design Model Artifacts – Logical Model. The Logical Model is divided to Design
Subsystems. Each subsystem, realizes a design use-case using design classes, interfaces and tasks.
The various tasks and the strategies to manage them are described in the Concurrency Design Model.
In essence, a Concurrency Design Model may be specific to a subsystem, though usually the general

strategies are described in the Top-Level Design Subsystem.

Logical Model

Top Level Design Subsystem Design Subsystem

Design ClassTask

Use Case Realization (Design) Interface

Concurrency Design Model
*

*

*

* *

1

*

Top Level Design Subsystem Design Subsystem

Design ClassTask

Use Case Realization (Design) Interface

Logical Model

Concurrency Design Model

AIT-WOODDES Deliverable:

October 2001 M2/CEA/WP1.3/V2.1

Internal Page 106

Figure 102 Design Model Artifacts - Physical Model. The Physical Model deals with the physical and the
runtime aspects of the Design Model by describing the physical architecture of the system. It contains a

Deployment Model that describes the way the physical software components are distributed over the
Nodes. A Component Model, that describes how the physical components are arranged and a

Safety/Reliability Model that aims to ensure safety and reliability at the physical architectural level.

Physical Model

Node

Component
Component Model

Deployment Model

Safety\Reliability Model

*

1

*

*

Physical Model

Node

Component
Component Model

Deployment Model

Safety\Reliability Model

AIT-WOODDES Deliverable:

October 2001 M2/CEA/WP1.3/V2.1

Internal Page 107

3.1.1.1 Artifact: Design Model

The Design Model is an abstraction of the software solution to the problem shown in the Analysis
Model. It consists of a Logical Model and a Physical Model (see below).

3.1.1.2 Artifact: Logical Model

The Logical Model describes the realization of use-cases, focusing on how functional and non-function
requirements, as well as other non-physical constraints, impact the system under consideration.

3.1.1.3 Artifact: Design Subsystem

The Design Subsystem artifact enables organizational division of the Logical Model into more
manageable pieces. Every Design Subsystem may be further divided into more Design Subsystems.
Design Subsystems consist of artifacts such as Design Classes, Interfaces, Concurrency Model, etc.
as shown in Figure 101.

A Design Subsystem is characterized by the following:

• It must be cohesive, i.e. its contents should be strongly related.

• It must be loosely coupled, i.e. the dependencies on the other subsystems should be as minimal as
possible.

• It must be self-contained, i.e. it should represent a set design concerns that can be addressed
separately and possibly concurrently by different teams.

• The top layers subsystems should have straightforward tractability into the analysis model.

• Design Subsystems may realize interfaces, thus enabling its use by other subsystems in a “black
box” manner.

• It may wrap a legacy or other reusable software product and provide interfaces to it.

3.1.1.4 Artifact: Top Level Design Subsystem

Top Level Design Subsystem is the top most Design Subsystem. A Design Model contains one and
only one of these artifacts. The reason it is distinguished from the other Design Subsystem since is that
it encapsulates the entire logical design.

3.1.1.5 Artifact: Design Class

A Design Class is a seamless abstraction of a class or a similar construct in the system
implementation. The abstraction is seamless in the following sense:

• The language used to specify a design class is the same as the programming language.
Consequently, operations, attributes (along with their visibility), types, arguments, etc. are specified
in the language syntax.

• The relationships in which a design class is involved often have straightforward meaning to the
class’s implementation. For example, associations may be mapped to class attributes.

AIT-WOODDES Deliverable:

October 2001 M2/CEA/WP1.3/V2.1

Internal Page 108

• The methods (that is, the realization of operations) have straightforward mappings to the
corresponding methods in the implementation of the class. This means that methods are specified
using the programming language syntax.

• A Design Class may postpone handling of subsequent implementation activities by noting them as
implementation requirements.

• A Design Class may be given a stereotype that is seamlessly mapped to a construct in the
programming language. For example, an <<exception>> in a Java class or a <<form>> in a Visual
Basic application.

• A Design Class may realize and thus provide interfaces it makes sense to do so in the programming
language. For example a Java class may provide one or more interfaces.

• A Design Class may be denoted as <<active>> implying that all of the objects of that class are
active. The detailed semantics of this is programming language and used technology dependent.

The Design Class relations can be described using class diagrams. A statechart diagram or an activity
diagram may describe the class’s behavior. The role it plays in various scenarios can be described in a
sequence diagram or a collaboration diagram. All above diagrams have direct impact on the Design
Class artifact.

3.1.1.6 Artifact: Interface

An Interface describes a set of operations provided by a design class of a design subsystem. A Design
Subsystem that realizes an interface must contain Design Classes or Design Subsystems (recursively)
that provide this interface. A Design Class that realizes an Interface must provide methods that realize
the operations of the interface or alternatively must be denoted as <<abstract>>.

Class diagrams, sequence diagrams and collaboration diagrams may be used to find and specify
interfaces.

3.1.1.7 Artifact: Use Case Realization (Design)

A Use Case Realization (Design) is a collaboration within the Design Model that describes how a
specific use case is realized, and performed, in terms of design classes and their objects (ref … UP).
This artifact must have straightforward mappings to the use case realization specified in the Analysis
Model and consequently to the Use Case model provided in the Analysis. As opposed to the Use Case
Realization in the Analysis Model, here most non-functional requirements such as time constraints or
other domain specific requirements are captured.

A Use Case Realization (Design) is described by at least one of the following:

• A textual flow-of-events description

• A Class Diagram depicting the participating design classes.

• Interaction Diagrams (Sequence Diagram and\or Collaboration Diagram) demonstrating particular
flows or scenarios of the use case in terms of the interacting design objects and\or design
subsystems.

Class Diagrams, Sequence Diagram, Collaboration Diagrams and Activity Diagrams may be used to
describe this artifact.

AIT-WOODDES Deliverable:

October 2001 M2/CEA/WP1.3/V2.1

Internal Page 109

3.1.1.8 Artifact: Concurrency Design Model

The Concurrency Design Model specifies the different independent tasks\threads in the design, how
objects are packaged into these tasks and the strategies of synchronizing and managing these tasks.

The Concurrency Design Model may be composed of the following UML diagrams:

• Class and Object Diagrams that focus on the way the Active Classes and Active Objects are
organized. In UML a Task is modeled by an Active Object, which controls a ‘thread of execution’.
Usually during construction these objects allocate an OS thread specifying all its attributes such as
scheduling policy and priority. Typically, (but no mandatory) Active Classes are composite classes
tightly aggregating component objects, which are accessed by the aggregating Active Class. (figure
… is an example of such diagram)

• Sequence and Collaboration Diagrams where the messages are differentiated by colors or line
styles, where each color or line style is associated to a different task. A more stand UML approach
to achieve the same thing would be to prefix each method name with the task name. (figures … and
… demonstrate such diagrams).

• Statecharts may used after Rambaugh’s approach (ref Rambaugh J. et. al. Object-Oriented
Modeling and Design, Englewood Cliffs, N. J.: Prentice Hall, 1991) which notes that concurrency by
objects generally arises by aggregation – that is, a composite object is composed of component
objects, some of which are active. In this approach, a single state of the composite object may be
composed of multiple states of its active component. The procedure where the composite object
accepts events and dispatches them to its aggregate active object may be modeled by a
statemachine. Because every active aggregate a task it is natural to denote this as an orthogonal

region with the composite object’s state35. The use of these statecharts are most applicable where
the object has TRUE states which wait for asynchronous signals and when orthogonal regions come
and go. (See figure … for an example)

• Activity Diagrams may be used in a similar way to Statecharts. Here, instead of orthogonal regions,
forks and joins separated by dashed ‘swim lanes’ are used. (see figure … for an example).

35 It is important to note that usually separate threads do NOT implement orthogonal regions. The common

implementation is that the same threads executes the entire statemachine.

AIT-WOODDES Deliverable:

October 2001 M2/CEA/WP1.3/V2.1

Internal Page 110

3.1.1.9 Artifact: Task

A Task is a flow of execution within the application. In non real-time environments it is refereed to a
Thread. For further details see Concurrency Design Model.

3.1.1.10 Artifact: Physical Model

The Physical Model describes with the physical runtime implementation of the system under
consideration. The Physical Model consists of a Deployment Model a Component Model and a
Safety/Reliability Model.

3.1.1.11 Artifact: Component Model

The Component Model describes the packaging of generated object artifacts that exist in runtime into
libraries, executables, databases, etc.

The term component applies to a physical software artifact that exist in runtime. It may be an
executable, a library, a database table, a DLL, etc. Like classes, components may realize interfaces so
when one component is calling another it must conform to that interface. Also like classes, components
may have instances so in some sense components are types of instances that exist at particular
memory addresses, processors or disks. It is not uncommon to have several replicates of a component
all over the system, for example a TCP/IP implementation may be present on every node.

Components are also binary-replaceable things (as opposed to classes). This means that a new version
of a component may replace a previous version without recompiling the other components, as long as
the new version meets the same interfaces.

In the Physical Model, the Component Model is specified by a set of component diagrams, which
specify which components are present, of what kind (executable, DLL, COM-Server, etc.), what
interfaces they implement and how they are organized. Reference 1 (M1) describes these diagrams.

3.1.1.12 Artifact: Component

A physical, replaceable part of a system that packages implementation and provides the realization of a
set of interfaces. (UML Standard). For further detail see Component Model.

3.1.1.13 Artifact: Deployment Model

The Deployment Model specifies strategies for the distribution of runtime components onto processors
and devices, as well as management of collaboration among distributed object (inter-thread and inter-
process communications). This artifact is the one that is most affected by the hardware design, i.e. the
electronic devices that execute the software (referred to as Nodes) and physical communication media
that links them together.

The software concerns for each node (or processor units) are:

• Envisioned purpose and scope of the software executing on the processor.

• Computational power of the processing unit.

AIT-WOODDES Deliverable:

October 2001 M2/CEA/WP1.3/V2.1

Internal Page 111

• Availability of development tools, such as compilers for the selected language, debuggers and in-
circuit emulators.

• Availability of third-party components, including operating systems, container libraries, user-
interfaces, etc.

• Previous experience and user expertise with the processor.

Deployment Models consist of Deployment Diagrams, which specify the nodes and their interrelations
and the runtime components they contain. Also, sometimes it is useful to specify tasks, subsystems
and other non-physical software that are implemented on the node, especially in systems that are not
designed in a component based manner.

3.1.1.14 Artifact: Node

A classifier that represents a runtime computational resource which generally has at least memory and
often processing capability. (UML standard). For further details see Deployment Model.

3.1.1.15 Artifact: Safety/Reliability Model

The Safety/Reliability Model aims to ensure the system will meet its reliability and safety
requirements by arranging and/or adding components within the Deployment and Component Models. It
specifically addresses strategies for:

a. Global error handling.

b. Safety processing.

c. Fault tolerance.

By safe we mean that the system does not creates accidents leading to injuries, loss of life and damage
to property. By reliable we mean a system that performs correctly for a long periods of time.

Usually the Safety/Reliability model realizes well-known safety designs patterns to achieve its goal. For
example: Watchdog Pattern, Homogeneous Redundancy Pattern, etc.

3.1.1.16 Artifact: Architecture Description

The Architecture Description is a document referring to all significant artifacts in the model from an
architectural point of view. It provides a high level overview of the architecture.

3.1.2 Roles\Workers

A Role denotes one of several roles that may be played by an individual (or a small group of individuals)
in the process.

3.1.2.1 Role: Architect

The architect is responsible for the integrity of the design, ensuring that models as a whole are correct,
consistent and readable. In addition, the architect is responsible for the Logical Model, the Physical
Model and the Architecture Description.

The architect is not responsible for the continuous development and maintenance of the artifacts in the
models. This is the responsibility of the Use-Case and the Component Engineers.

AIT-WOODDES Deliverable:

October 2001 M2/CEA/WP1.3/V2.1

Internal Page 112

3.1.2.2 Role: Use-Case Engineer

The use-case engineer is responsible for the integrity of one or several use-case realization (design),
ensuring they fulfill the requirements made on them. The realization of the design use-case must
correctly realize the analysis use-cases as well as to be consistent with the analysis use-case model.

The use-case engineer is not responsible for the design-classes, interfaces, subsystems and
relationships employed in the use-case realization.

ArchitectArchitect

Logical ModelLogical Model Physical ModelPhysical Model

Architecture DescriptionArchitecture Description

architectural view

responsible for

architectural view

Figure 103:Architect Responsibilities.

Use-Case
Engineer
Use-Case
Engineer

responsible for

Use-Case Realization (Design)Use-Case Realization (Design)

Figure 104: Use-Case Engineer Responsibilities.

AIT-WOODDES Deliverable:

October 2001 M2/CEA/WP1.3/V2.1

Internal Page 113

3.1.2.3 Role: Component Engineer

The component engineer defines and maintains the operations, methods, attributes, relationships and
implementation requirements of one or several design classes, making sure that each design class
fulfills the requirements made on it from the use-case realizations in which it participates.

The component engineer may also maintain the integrity of one or more subsystems, making sure their
contents are correct, their dependency on other subsystems is minimal and that they realize the
interface they provide.

Component
Engineer

Component
Engineer

responsible for

Design SubsystemDesign Subsystem

Design ClassDesign Class
InterfaceInterface

Figure 105:Component Engineer Responsibilities.

3.1.3 Phases and Activities

The design process has three phases as shown in Erreur ! Source du renvoi introuvable..

The process starts with an Architectural Design performed by the architects. Then the use-case
engineers perform a Mechanistic Design realizing each design use case in terms of the participating
design classes, interfaces, subsystems, tasks, etc. while, the Component Engineers start to perform
detail design of the design classes which serve as input back to the Mechanistic Design activity and vice
versa. Finally the design of the entire subsystem is concluded.

Throughout the design, the developers identify new candidates for new classes, interfaces, components,
etc. as the Design Model evolves.

AIT-WOODDES Deliverable:

October 2001 M2/CEA/WP1.3/V2.1

Internal Page 114

Architect
Architectural
Design

Architectural

Design Phase

Use-Case
Engineer

Mechanistic Design

Mechanistic

Design Phase

Component
Engineer Design a Class

Detailed

Design Phase

Design a Subsystem

Figure 106: Design phases and activities.

3.1.3.1 Phase: Architectural Design

The purpose of architectural design is to outline the Logical and Physical Models of the design by
identifying the following:

• Nodes and their network configurations.

• Design Subsystems and their interfaces.

• Architecturally significant Design Classes.

• Major Tasks \ Active Classes.

• Runtime components and their distribution.

Generic design mechanism including Safety\Reliability mechanisms, Task synchronization strategies,
node communications strategies, etc.

The architect has to balance various quality factors such as efficiency, extendibility, reusability,
portability, etc. throughout this activity in order to come up with the optimal architecture that will serve as
a platform for a high quality design.

Figure 107 shows the input and results of this activity.

AIT-WOODDES Deliverable:

October 2001 M2/CEA/WP1.3/V2.1

Internal Page 115

ArchitectArchitect

Analysis ModelAnalysis Model

Use-Case ModelUse-Case Model

Analysis DocumentationAnalysis Documentation

Physical ModelPhysical Model

Interface
[outlined]
Interface
[outlined]

Subsystem
[outlined]
Subsystem
[outlined]

Concurrency Design ModelConcurrency Design Model

Architecture DescriptionArchitecture Description

Architectural
Design

Design Class
[outlined]

Design Class
[outlined]

Figure 107: the “architectural design” activities of the AIT-WOODDES Methodology.

The activities of architectural design are:

1 - Identifying Nodes and Network Configurations

2 - Identifying Subsystems and their Interfaces

d. Identifying Application Subsystems

e. Identifying Middleware and System-Software Subsystems

f. Defining Subsystem Dependencies

g. Identifying Subsystem Interfaces

3 - Identifying Design Classes from Analysis Classes

4 - Identifying Tasks and Active Classes

5 - Identifying Components and their Interfaces

a. Identifying Reusable Components

b. Specifying Component Organization

c. Identifying Component Interfaces

As in all phases, the order of activities is optional, and it is not uncommon to go back to previous
activities and update their artifacts as a result of a subsequent artifact.

AIT-WOODDES Deliverable:

October 2001 M2/CEA/WP1.3/V2.1

Internal Page 116

Activity: Identifying Nodes and Network Configurations

Some systems are implemented over several nodes. In this case, the ways the various components are
deployed over the network, the role of the nodes, the communication protocols, etc. have a major impact
on the software architecture. For example: the decision to implement a system using a client-server
architecture and choosing CORBA as the distribution technology may impact all subsequent phases of
the architectural design.

Aspects of network configuration include:

• Which nodes are involved, and what are their capacities in terms of processing power and memory
size?

• What types of connections are between the nodes, and what communication protocols will be used
over them?

• What are the characteristics of the connections and communication protocols, such as availability,
bandwidth and quality?

• Is there any need for redundant processing capacity, fail-over modes, process migration, keeping
backup of data, etc. (In other words what safety patterns are to be used in the safety/reliability
model across the network) ?

[Test Case Speed Regulator]

Figure 108 shows a possible deployment diagram for the speed regulator system36. The RegulatorCtrl is
the “brain” \ “heart” of the system. It performs all feedback, control and monitor activities. The
EngineAdaptorUnit and SpeedometerAdaptoUnit are hardware adaptors that mediate between specific
kinds of engines and speedometers to the RegulatorCtrl. This way the RegulatorCtrl hardware\software
unit can be reused over a wide range of cars. The RegulatorInterface serves as the front end of the speed
regulator: using it, the user can turn on and off the feedback loop; see the regulated speed, and more. In
addition, this node is also connected to the brake and accelerator pedals, as they are in effect part of
the “User Interface” of the speed regulator. The brake and accelerator pedals are not shown as nodes on
the diagram, since these are not considered as processing units.

The physical protocols and connections used between the nodes are specified in the diagram as labels
on the communication paths. The speed regulator uses a proprietary protocol over these connections. In
case of any failure in communications between the nodes, an error LED is lit on the RegulatorInterface
and the feedback loop is turned off.

36 The test case should only be related to as an example. It is not suggested that real-life speed regulators are

implemented using distributed software elements or even using connections such as RS232.

AIT-WOODDES Deliverable:

October 2001 M2/CEA/WP1.3/V2.1

Internal Page 117

SpeedometerAdaptorUnit

EngineAdaptorUnit

RegulatorCtrl

RegulatorInterface

RS485

RS485

RS232

Figure 108: Deployment Diagram for the Speed Regulator system.

Activity: Identifying Subsystems and their interfaces

Subsystems can either be divided initially as a way to divide design work or found as the design model
grows and needs to be decomposed. In addition, some subsystems may not be developed as part of the
project, i.e. some subsystems may be reused from other projects or be subcontracted.

According to the approach presented here (based on the Unified Process) the subsystems may be
arranged in four layers, as seen in Figure 109. The Application specific layer holds subsystems and
packages that are not used by other packages and subsystems. The Application general layer contains
application logic that is being reused by other packages of the application. The two bottom layers,
middleware and system software, represent subsystems and packages that can be reused by other
applications as well. These may be developed as part of the project or reused from standard or legacy
software systems.

AIT-WOODDES Deliverable:

October 2001 M2/CEA/WP1.3/V2.1

Internal Page 118

Figure 109: Subsystem layering

3.1.3.1.1.1 Identifying Applications Subsystems

In this stage architect specifies the subsystems in the application-specific and the application-general
layers. The general strategy is to start from the analysis packages, identify service subsystems that do
not break the structuring of the systems according to the services it provides, and arrange the packages
in the two layers. Yet, this is just a general strategy, other considerations such as the organizational
structure of the project, available human resources, etc. may also come into play since this division has
an impact of how the work is distributed among the role players.

3.1.3.1.1.2 Identifying Middleware and System-Software Subsystems

These two layers are the foundation of the system, since all functionality rests on top of the operating
system, communication software, GUI design kits, execution frameworks, etc. During this activity the
architect chooses these software products and validates that they fit into the overall architecture and
provide cost-effective implementation of the system.

The architect tries to limit the dependencies of the application subsystems, especially the middleware
subsystems. The reason for this is that in many cases there is only little control over products developed
by other vendors. The way to eliminate dependencies is to treat acquired software as a separate
subsystem with explicit interfaces, try and acquire software that conforms to common well-known
standards.

3.1.3.1.1.3 Identifying Subsystem Dependencies

If the contents of subsystems relate to each other then there is a dependency between these
subsystems. The direction of the dependency is the same as the direction of the relationship, while a
symmetric relation is translated to two dependencies (with opposite direction), which is not desirable.

In case the content of the subsystem is still unknown, the dependencies are drawn according to the
dependencies between the analysis packages.

Application specific layer

Application general layer

Middleware layer

System software layer

AIT-WOODDES Deliverable:

October 2001 M2/CEA/WP1.3/V2.1

Internal Page 119

If some of the subsystem interfaces are known, then dependencies to these subsystems should relate
to the interfaces.

[Test Case Speed Regulator]

Figure 110 shows a possible division of the Speed Regulator to subsystems. The regulatorUI contains
the design of the user interface used by the speed regulator end users. It is the only subsystem located
in the Application Specific layer since it is the only one that is not being used by the other subsystems.
In the Application Generic layer we have the regulatorControl, which is responsible for the feedback loop
that maintains the speed. It uses the speedometerAdaptor to sample the current speed of the car and
readjusts the speed using the engineAdaptor subsystem. The regulatorControl reuses a generic
feedback subsystem that has classes that implement generic PID feedback loops. Since the feedback
subsystem is not related to the application at all, it resides in the Middleware layer. Two additional
layers are specified in the Middleware layer: the execution framework, which contains generic event
handling and dispatching, multi threading support, timings utilities, containers and more and the hwUILib
that provide services such as turning on and off LEDs, displaying text on hardware devices, etc. The
system layer contains the hardwareServices subsystem, which contains all the services the hardware
platform provides. Any one of the above of the subsystem may be further divided into subsystem as the
design evolves.

f e e d b a c ke x e c u t i o n F r a m e w o r k

s p e e d o m e t e r A d a p t o r

e n g i n e A d a p t o r

h a r d w a r e S e r v i c e s

r e g u l a t o r U I

r e g u l a t o r C o n t r o l

h w U I L i b

--

-

A p p l i c a t i o n S p e c i f i c

M i d d l e w a r e

S y s t e m s o f w a r e

A p p l i c a t i o n G e n e r i c

Figure 110: Speed regulator subsystems

3.1.3.1.1.4 Identifying Subsystem Interfaces

The interfaces provided by the subsystem define services that are accessible from the “outside” of the
sub-system. Classes or subsystems within the subsystem implement these.

If a subsystem has a dependency pointing at it, then probably one interface or more should be defined
for it providing the required services. In addition, if there is an analysis package that can be traced from
the subsystem, then any analysis class that is referenced from outside the subsystem may imply an
interface of this subsystem.

[Test Case Speed Regulator]

AIT-WOODDES Deliverable:

October 2001 M2/CEA/WP1.3/V2.1

Internal Page 120

Figure 111 demonstrates how subsystem interfaces can be shown on a class diagram. The
regulatorControl subsystem adjusts the speed of the car by using the engineController and the
speedSampler interfaces implemented by the engineAdaptor and speedometerAdaptor respectively. In
this example, the interfaces themselves are defined in the implementing subsystems, however, in many
cases, the interfaces are specified in the dependent sub system as a sort of “requirement” for the
implementing subsystem.

+accelerate(int del ta)

engineAdaptor: :engineControl ler

<<Interface>>

regulatorControl

+getCurrentSpeed()

speedometerAdaptor : :speedSampler

<<Interface>>

engineAdaptorspeedometerAdaptor

 <<Usage>>
 <<Usage>>

Figure 111: Adaptor interfaces used by regulatorControl subsystem.

Identifying Design Classes from Analysis Classes

Most design classes will be specified during the ‘Detailed Design’ activity (‘Design a Class’) however, it
is often practical to identify architecturally significant design classes to initiate the design work during
early stages of design. Yet, at this stage, one should be careful not to over specify too many classes
and delve into too many details, since it may lead to unnecessary classes, i.e. classes that do not
participate in any of the use-case realizations.

The most obvious design classes one can identify are the ones that correspond to the architecturally
significant analysis classes. Also, the relationships between these design classes will probably
correspond to the relations between the analysis classes. These relations are ‘tentative relations’ i.e.
they me be elaborated as the design evolves.

Identifying Tasks and Active Classes

This activity is concerned with the concurrency design model artifact, which plays a major role in the
design of real-time embedded systems because it has direct impact on system performance as well as
hardware requirements37. Since the concurrency design model affects the entire system and also it may
expose potential risks, this activity is carried out early in the design process as part of the architectural
design activity.

37 Generic processes, such as the unified process, do treat active classes in a special way and these are also

identified early in the design process. However, these processes do not advocate a separate artifact such as a

concurrency design model. This approach is more characteristic for processes concerned with real-time

systems where scheduling and timing may affect correctness and not just performance in general.

AIT-WOODDES Deliverable:

October 2001 M2/CEA/WP1.3/V2.1

Internal Page 121

There are numerous approaches for finding the threads and grouping objects into threads. The approach
we chose to present here is based mainly on Octopus (reference .. E. Gery, R. Rinat, J. Ziegler,
Octopus Concurrency Design with Rhapsody) which is a set of analysis and design methods developed
by Nokia.

The input for this activity is the classes found so far in the “Identifying Design Classes from Analysis
Classes” activity and the Use-Case Model: the architect needs to group the classes into task threads
using the use-case model of the analysis. For this, Octopus prescribes a set of iterative stages shown in

Figure 112.

The first step is to identify ‘event interactions38’. An event interaction is a series of objects interactions
designed to produce the desired response to an external event. The external event in this case can be a
signal, a timeout, a call from an external software system, etc. The identification of these event
interactions is derived from the design classes found so far and the analysis use-case models. A
common way to model the interaction is via collaboration diagrams, but other types of diagrams such as
sequence diagrams, statecharts or activity diagrams can be used as well.

After modeling the event interactions the architect ‘qualifies’ them: This means that the architecture
decides if each message is synchronous or asynchronous for every event interaction. Usually there is no
single optimal qualification and that is why octopus prescribes this activity to be iterated.

The next stage is to identify interaction groups and map them to threads. An interaction group is a group
consisting of interacting objects along with their interactions. The interaction groups should be “closed
under synchronous continuation”: this means that whenever an interaction belongs to a group, and there
is a synchronous interaction continuing it then this interaction is also in the group.

Following is a list of strategies for identifying interaction groups39:

• Single event groups: In simple systems it may be possible to group each response to an external or
internal event to a separate interaction group. Usually this is not feasible for complex systems where
many events can occur all the time or when context switch time is significant relative to the event
response time.

• Event source: This strategy groups interactions that are initiated from a common source such as an
actor or an external subsystem. This is many times the simplest approach, especially if the
subsystems have well defined interfaces,

• Interface device (port): This strategy groups threads that encapsulate control of a specific interface
such as RS232, a TCP/IP socket, etc. This is a special case of the former Event Source.

• Related information: When the same data is to be manipulated by many interacting objects, these
interactions can be grouped to the same interaction group.

38 Octopus uses the term ‘Event thread’ and not ‘event interaction’. The reason for the change in terminology is

to avoid confusion with threads of execution.
39 This list is based on ROPES despite the difference of approach between Octopus and ROPES.

AIT-WOODDES Deliverable:

October 2001 M2/CEA/WP1.3/V2.1

Internal Page 122

• Unrelated information: When two interactions seem unrelated, they are entered to different
interaction groups.

• Timing characteristics: If a data arrives at a given rate, a single periodic thread can handle the data
and dispatch it. In addition, a single interrupt handler can handle non-periodic events.

• Safety concerns: A common rule of thumb in safety-critical systems is to separate the safety
monitoring from actuation. This implies having a separate interaction group for safety monitoring.

The last stage prescribed by Octopus is to assign priorities to each of the threads, and iterate again,
reviewing the interactions and the threads identified so far.

Figure 112: Constructing a concurrency model using Octopus

Octopus prescribes a way to group interactions into threads, but still the active classes and active
objects that will control the threads are to be specified. The active object may be one the interacting
objects or a newly specified object with the sole purpose of controlling the interaction. Sometimes, in
simple cases, there might be a composition relation between the active object and the rest of the
objects in the interaction group.

ROPES presents an alternative approach to Octopus: first the active classes, which represent the
threads of execution are specified using various strategies (similar to the ones described above), and
then objects of the design classes, found so far, populate each thread. Sometimes, this approach
seems more straightforward than the one shown above, especially when these active classes can be
mapped directly to an analysis or a design class or when very few design classes are available. Yet, it is

AIT-WOODDES Deliverable:

October 2001 M2/CEA/WP1.3/V2.1

Internal Page 123

the opinion of the author that the risks of missing threads or over specifying threads in the Octopus
approach is reduced by relating to groups of interactions that are “closed under synchronous
continuation” prior to the task definition. As usual a combination of approaches can be combined
according to the specific case. ROPES approach fits more to the architectural design phase, while using
Octopus usually requires going back and forth between mechanistic design and architectural design.

Activity: Identifying Components and their Interfaces

While Activity: Identifying Nodes and Network Configurations (section 0) was concerned with the
Deployment and Safety\Reliability Model, the other activities so far revolved around the Logical Model.
Here we revisit the Physical Model and complete it by specifying how the logical artifacts will be
implemented as software components. The main UML diagrams that are used in this activity are
Component and Deployment diagrams.

3.1.3.1.1.5 Identifying Reusable Components

Sometimes it is possible to identify a way to implement some of the logical artifacts in the form of
resuable components or alternatively decide that some of the logical artifacts will instantiate third party
resuable components at runtime. By resuable we mean that several instances of the same component
may exist at runtime in the system possibly with different configurations. For example : suppose we
decide to have a TCP/IP connection socket as a resuable component that may be configured at runtime
to connect to a certain IP address with certain buffer sizes. This component can be given as a binary file
to any application developer that needs such functionality without exposing any of its implementation
details. The application developer can either use a specialized IDE or component technology such as
COM to use this component or configure and instantiate it programmtically.

In many cases the decision to use such components (some refer to this approach as « component
based design ») will be determined at early stages of the design when the underlying technologies are
selected. For example the choice of CORBA, EJB or DCOM at an early stage will usually to such
designs. Nevertheless, some may relate to conventional subsystems with interfaces bundled as a
shared library, DLL, JAR file or any other format that can be linked dynamically as a resuable
component.

After identifying such components in the system the architect may decide to purchase\subcontract
these components from third party vendors. Using reusable components may also lead to better quality :
especially reusability and extendibility but also reliability and other factors. On the other hand,
component based approach may in some cases have an overhead which will affect efficiency, for
example using CORBA or COM.

3.1.3.1.1.6 Specifying Component Organization

All logical elements are eventually implemented as components, reusable or regular static libraries,
executables, command scripts, etc. In this activity the architect decides how the various subsystem will
be bundled, their composition (a component may contain other components) and the way they would be
deployed. Sometimes it turns out that a subsystem needs to be further divided into subsystems in order
to allow its implementation in several components across several nodes.

Two conflicting considerations have to be taken into account: on the one hand components should be as
self contained as possible in order to allow easier installation and deployment, on the other hand

AIT-WOODDES Deliverable:

October 2001 M2/CEA/WP1.3/V2.1

Internal Page 124

components should not contain too much so better reusability and extendibility will be gained (modular
design).

3.1.3.1.1.7 Identifying Component Interfaces

In this activity the interfaces provided by the components are specified along with the dependencies
between the components. The purpose of this is to reduce the risk caused by a change in one
component to the other components by formalizing the relationships between the various components.

Every interface assigned to a component defines a sort of contract: what services are provided by the
component and in what form. This way components engineers can be more aware of the impact their
changes may cause.

A component may realize more than a single interface where the division is usually carried out according
to the types of the services provided. By definition a composite component exposes all the interfaces
assigned to its sub components.

Despite the advantage of specifying which interface is used by each dependent component, in some
cases it is unrealistic to do so. For example, specifying such an interface for a procedural mathematical
library would achieve nothing but redundant duplicate definitions of all of the public functions. In such
cases dependencies without any specification of interfaces are used to signify the relations between the
components.

At an early stage of the architectural design the architect specifies the major services defined by the
interfaces as well as defining the interfaces provided by each component. As the system evolves (in
subsequent iterations) more and more services are added to the interfaces, however changing an
operation defined by one of these interface should be avoided as much as possible.

3.1.3.2 Phase \Activity: Mechanistic Design

Mechanistic Design is concerned with specifying the details of inter-object collaboration to achieve the
required functional requirements. These collaborations may be generalized into design patterns
mechanisms and applied in different situations.

Mechanistic Design takes use case realization scenarios from the Analysis Model and adds design level
artifacts to facilitate and direct their implementation. Such artifact may be taken from the architectural
design result but also from the Detailed Design, such as the container used for association, memory
design patterns such as smart pointers to avoid memory leakage, etc.

Many of the collaborating design objects reappear in the various scenarios because they can be reused
to solve common problems.

As mentioned above, Mechanistic Designs revolve around the realization of use-cases at the design
level. The purposes of this design is:

• Identify the design classes and/or subsystems whose instances are needed to perform the use-
case’s flow of events.

• Distribute the behavior of the use-case to interacting design objects and/or to participating
subsystems.

AIT-WOODDES Deliverable:

October 2001 M2/CEA/WP1.3/V2.1

Internal Page 125

• Define requirements on the operations of design classes and/or subsystems and their interfaces.

• Capture implementation requirements for the use-case such as various non-functional requirements
that are to be addressed during implementation.

The activities of mechanistic design are:

1 - Identifying the Participating Design Classes

2 - Describing Design Object Interactions.

3 - Identifying the Participating Subsystems and Interfaces.

4 - Describing Subsystems Interactions.

5 - Capturing Implementation Requirements.

6 -

Figure 113: Mechanistic Design.

Activity: Identifying the Participating Design Classes

In this activity the Use Case Engineer identifies which of the design classes found during the
architectural design or during the detailed design take part in the use case realization at hand (the use
cases are found in the use case model constructed in the analysis phase).

Use-Case
Engineer
Use-Case
Engineer

Analysis ModelAnalysis Model

Use-Case ModelUse-Case Model

Physical ModelPhysical Model

Interface
[outlined]
Interface

[outlined]

Subsystem
[outlined]
Subsystem
[outlined]

Design Class
[outlined]

Design Class
[outlined]

Mechanistic
Design

Logical Model
[outlined]

Logical Model
[outlined]

Use-Case Realization (Design)Use-Case Realization (Design)

AIT-WOODDES Deliverable:

October 2001 M2/CEA/WP1.3/V2.1

Internal Page 126

A design class may take part in a use case realization if it can be traced to an analysis class that
participates in the use case realization – analysis or if it is designed to achieve a non-functional
requirement specified in the analysis.

If the use case engineer concludes that some design classes are missing, the architect or the relevant
component engineer are assigned with task to define the required classes.

Activity: Describing Design Object Interactions

In this activity the Use Case Engineer draws sequence diagrams and collaboration diagrams (called
interaction diagrams in general) to describe the interactions between the design objects and between the
design objects and the actors that are realizing the use case.

Usually this activity is initiated by studying the analysis use case scenarios to get an outline of the
design scenarios. Then the analysis classes are replaced with the design classes and parts of the
analysis scenario are elaborated sometimes breaking a single sequence diagram to several diagrams.

In addition the use case engineer should relate to scenarios where malfunctions occur: for example a
connection to a node is lost, an erroneous input is given, errors are reported from the system or
hardware level, etc.

All and all, the purpose of this activity is to reduce the risk that things were missed and that the use
case can be realized by the specified components. Specifying too many scenarios is not only
unnecessary but may sometimes lead to obscurity. If the UML tool used offers animation, it may be
desirable to let the animation produce the detailed scenarios and then review them or compare them to
previous animated scenarios or manually specified scenarios.

Activity: Identifying the Participating Subsystems and Interfaces

Sometimes it is desirable to relate to subsystems or interfaces in the collaboration than to specific
classes. This way the collaboration is independent of the internal structure of the subsystem, and in
addition a more abstract description is specified leading to easier understanding of the flow.

Similar to the case of participating design classes, the participating subsystems\interfaces can either be
traced to analysis classes that participate in the analysis use case realizations or represent design
classes that are to be used for a non-functional requirement and contained in the design subsystem.

Activity: Describing Subsystem Interactions

Similar to describing the collaborating design classes the use case engineer may use sequence
diagrams to describe the interactions with the subsystem. In this case, the subsystem itself cannot be
added directly to the sequence diagram, instead either its interfaces are specified or the design class
that serves as the core or façade of the subsystem (see Design a Subsystem activity in section 0). If
neither of the above is available, the subsystem is probably no cohesive enough and this may suggest
that restructuring of the subsystem by the architect is required.

AIT-WOODDES Deliverable:

October 2001 M2/CEA/WP1.3/V2.1

Internal Page 127

Activity: Capturing Implementation Requirements

In this activity non-functional requirements that concern the implementation are specified. For example,
specification of response times from objects or the amount of requests that can be handled concurrently
by a single object.

3.1.3.3 Phase: Detailed Design

The detailed design phase is the lowest level of design. It is concerned with the definition of the internal
structures and behavior of individual classes in the various subsystems.

The Detailed Design Phase consists of two activities: “Design a Class” and “Design a Subsystem”.

Activity: Design a Class

The purpose of designing a class is to create a Design Class that fulfills its role in use case realizations
and the non-functional requirements that apply to it. This includes specifying the following aspects of the
class:

• Its operations and event reception.

• The relationships it participates in (association, aggregation, etc.)

• Its method with the algorithms implemented (realizing the operations)

• Its imposed states.

• Its attributes.

• Exceptions handled or thrown by its operations.

• Its dependencies to and from generic design mechanism.

• Requirements relevant to its implementation.

• The correct realization of any interface it requires to provide.

AIT-WOODDES Deliverable:

October 2001 M2/CEA/WP1.3/V2.1

Internal Page 128

Component
Engineer

Component
Engineer

Interface
[outlined]
Interface
[outlined]

Design Class
[complete]

Design Class
[complete]

Design a Class

Use-Case Realization (Design)Use-Case Realization (Design)

Design Class
[outlined]

Design Class
[outlined]

Analysis ClassAnalysis Class

Figure 114: The "Design a Class" Activirty of the AIT-WOODDES Methodology.

Activity: Design a Subsystem

The purposes of the Design a Subsystem activity is to:

• Ensure minimal dependency to other subsystems.

• Ensure that the subsystem provide the right interface.

• Ensure the subsystem fulfils its purposes in that it offers a correct realization of the operation as
defined by the interface it provides.

Note: usually a subsystem provides an interface by having one of its classes provide this interface and
allowing access to its instances.

AIT-WOODDES Deliverable:

October 2001 M2/CEA/WP1.3/V2.1

Internal Page 129

Component
Engineer

Component
Engineer

Interface
[outlined]
Interface
[outlined]

Design a Subsystem

Design Class
[outlined]

Design Class
[outlined]

Subsystem
[outlined]
Subsystem
[outlined] Subsystem

[complete]
Subsystem
[complete]

Interface
[completed]

Interface
[completed]

Figure 115: The “design a subsystem” Activity of the AIT-WOODDES Methodology.

AIT-WOODDES Deliverable:

October 2001 M2/CEA/WP1.3/V2.1

Internal Page 130

4 PHASE – “BUILD IMPLEMENTATION MODEL”

Purpose of this modelling and expected results (i.e. types of diagrams the step has to provide, which
level of detailed to reach, possibly some contractual and/or formatted document to supply at the end of
the step for the next step, …)

Object-oriented development with a UML-based method results in graphical/textual models that have
then to be mapped correctly and efficiently to programming code from which an executable
implementation will be generated.

However, in the well-known UML-oriented methods, there is not much emphasis given to the transition
from model to code. In the reference books such as ([Rumbaugh, 91 #486], [Desfray, 94 #474], [Booch,
86 #102], …), there is only one chapter that discusses implementation issues, and only from a general
point of view. A few technical papers are available ([Rumbaugh, 1996 #152]), that give more insight e.g.
on how associations can be implemented. A similar remark can be made with books on object-oriented
programming such as ([Meyer, 92 #525], [Stroustrup, 2000 #524]) that generally have only one chapter
to explain how features of the language relate to modelling concepts as found in the UML. There are new
meta-modelling approaches introducing a method of “design by translation”, that take into account non-
functional requirements and thus help to bridge the gap to implementation.

In WOODDES, the entry for the implementation phase is given by the previous phase (Design) but also
by the use cases established earlier, that are used to derive an architecture. The architecture is an
important input for the implementation. UML provides two main diagrams to describe the structure of the
implementation: component and deployment.

The overall goal of the implementation diagrams is to allow them to be part of the “build” process, i.e.,
they should be used both as input to the “make” process and as input to the targeting process. For this
purpose, component diagrams detail how to put together the functional parts of the system (the type
view), and the deployment diagrams detail how the system should be physically configured and
deployed (the instance view). Some improvement of these diagrams could also render implementation
easier, for example by specialising them towards specific application domains, where components
exhibit some common behaviour through the use of standard interfaces.

4.1 Overview of the AIT-WOODDES approach

TBC

4.2 Diagram to use for implementation

As just said above, implementation diagrams are made of component and deployment diagrams. They
are designed for the purpose of capturing the details of an object-oriented design. Components can be
used to describe the individual modules of software capable of independent execution in a distributed
environment (e.g. CORBA). Deployment diagrams can then be used to show how these modules are
deployed upon a physical network of resources (processors, memory, …). Additional constraints can be
attached to those diagrams to make them more specialised e.g. by means of some stereotypes.

AIT-WOODDES Deliverable:

October 2001 M2/CEA/WP1.3/V2.1

Internal Page 131

4.2.1 The Component Diagram

Components and their interfaces provide the way to define a system’s architecture, by offering
encapsulation and information hiding; so they prevent any access to their inside except through their
public interface. A component is a software artefact that exists at run-time for example an executable
program or a library.

Example1: (possibly from the car speed regulator) to be completed

In the UML, a component architecture can be partly derived from the use cases: the functionality of a
use case is encapsulated in some components with appropriate interfaces. Components can also be
elaborated in a hierarchical structure, with for example components that are built on top of other
components. These can be components that are part of the system “infrastructure”, or external
components that interface with. A support tool should allow to easily import such external components
(e.g. COM components on Windows) with a type library into the model.

The interfaces of a component are elaborated by grouping the operations, but avoiding long list of
functions. It should be noted that an object-oriented interface (e.g. obtained by creating some artefact at
the interface level) is much easier to understand compared to a pure functional interface. The operations
of the interface typically evolve and grow as the component matures. In order to assess the interfaces,
one can derive sequence diagrams that materialise some use cases, and use the interfaces available in
the component. This way allows to verify that the interfaces required for these scenarios are provided; on
the contrary one has to create new operations in the interfaces.

For the purpose of implementation in WOODDES, the component diagram can be used to depict the
constituents of a system or a component, and should be taken as input by an automated process for
making the system. For example, one may have a component that shows the end result of the “make”
process on UNIX.

As such, a component should contain information about which parts make up the system, how they
should be compiled, what libraries need to be linked in, whether the system should run on UNIX or NT,
whether multithreading is required, etc... To some extent, further specialisation of the component
diagram may be needed to handle these aspects. An important aspect is to provide information about
the threading policies of a component.

Example2: (possibly from the car speed regulator) to be completed

A component-based architecture fits with an assembling development technique. That is, much of an
application can reuse already developed components, so that the remaining development work can be
limited to pickup the desired components and programming only the code to glue the components
together and drive them. In the case of large-scale applications with many components, the UML
package concept can be used to group components together so that they can be organised.

However if the UML contains basic constructs for component-based development, some aspects of
modelling components are not yet covered: It is difficult to specify components that are fully plug-
substitutable. The notion of interface may be too weak to express all kinds of interactions between
components; for example, in addition to simple message calls and receptions, it could include the
definition of more complex transactions and in/out communications. By means of such mechanisms, a
component could specify constraints (e.g. which operations and signals it will require from its connected

AIT-WOODDES Deliverable:

October 2001 M2/CEA/WP1.3/V2.1

Internal Page 132

components) on its environment in addition to the services it offers to other components. It is also
recommended that the connections between components are specified independently of the
specification of the components.

Additional aspects of components that should be considered for the implementation phase are:

i. Components and interfaces: It is necessary to take into account how components relate to different
component-based architectures, such as CORBA components. In this context, it will also be
necessary to take a look at how UML interfaces relate to for example CORBA interfaces, and how
UML interfaces and associations relate to each other.

ii. Components and classes: In many cases it makes sense to think of structured classes as logical
components, which may be hierarchically structured. These are components that are internally
made up of other components, all of which have their own set of interfaces. This relationship has to
be elaborated in more detail.

4.2.2 The Deployment Diagram

The basic purpose of an object-oriented program is to create a set of objects which will interact at run
time to satisfy user’s needs. The UML provides the basic mechanisms needed to draft this aspect of
system’s implementation by means of an object diagram. However, this diagram is used at the analysis
phase, and generally represents a typical set of named instances and related links that only provides an
illustration of the kind of object structures needed by the application. There is no exact specification of
how and when the object structure will exist at run time.

The deployment diagram, on the other hand, goes further down, and can depict the physical organisation
of the system in a run-time environment, such as how it should be configured in a distributed network. It
must be noted that when building a distributed implementation, the deployment generally has an impact
on the definition of components. For example, components cannot cross deployment nodes; but for a
largely distributed system, this may be the case that a component crosses a boundary, and therefore it
must be split in two or more sub-components. As a conclusion when building a distributed system, it
may be wise to elaborate the deployment model earlier in the project life cycle.

Example3: (possibly from the car speed regulator) to be completed

The instance view of the deployment diagram is used as input to the targeting process, and should
primarily show what the system will look like when it starts executing. The location of components is
generally done statically for real-time embedded systems. The main reason for this is that much of the
embedded software is tightly bound to hardware devices and interfaces, and so a dynamic location of
components would be very difficult to realise.

Another use of UML deployment diagrams in system implementation is to specify the physical
relationship among hardware and software components in the real-time infrastructure. This phase is of
high importance when dealing with hybrid systems that are partitioned into hardware and software, each
part being implemented in a dedicated object-oriented language e.g. Objective VHDL and C++
respectively. The generation of both codes requires then to generate the interfaces between the two
sides, based on the information contained in the deployment diagrams.

AIT-WOODDES Deliverable:

October 2001 M2/CEA/WP1.3/V2.1

Internal Page 133

In the context of real-time hybrid systems it should be suitable to have a framework to clearly distinguish
between different architectural aspects of object-oriented systems. Such a framework would keep
application objects, system infrastructure, hardware resources and network topology in separate UML
diagrams. As a result, it would be possible to experiment with different design alternatives in some part
of the system without having to modify other parts.

4.3 Model consistency rules

There are two kinds of consistency rules that must be investigated:

i. Rules that are already included in the UML notation, for which there exist checkers. For example
there exists a checker to verify that class diagrams (CD) and state machine diagrams (SMD) are
consistent; the same for consistency between SMD and sequence diagrams (SQD).

ii. Rules that can be defined/customised specifically for the purpose of WOODDES. For example
depending on the extensions the project will bring to some UML diagrams, one may define additional
consistency rules. A typical case for WOODDES will be the use of specific stereotypes that will
have to be checked.

Regarding components, following rules should be verified:

♦ Component interfaces should avoid long lists of operations and functions.

♦ Components are binary-replaceable things. This means that if a revision of a component is created,
it should be able to replace a previous revision of the same component without recompiling other
components.

♦ Components are important for systems where updating, maintenance, distribution and reuse are key
aspects. These are typical of real-time and embedded systems. If on the contrary, the developed
system is not concerned with that, then a single monolithic component should suffice.

Regarding deployment, following rules should be verified:

♦ Each component must belong to one of the nodes of the deployment model, possibly through a
package within a node.

♦ A deployment model must tell where each component executes, and how each component interacts
between the processors and other electronic devices such as physical communication ports.

♦ Stereotyping is much recommended with the nodes, particularly by means of bitmaps to resemble
the purpose of the nodes.

4.4 Deployment and targeting

4.4.1 Preliminary Assessment

Before going to implementation of a real-time object-oriented system, it is necessary to evaluate the
design models made in UML in order to have an early feedback of both the functional and non-functional
behaviours of the system. This step, done at the prototyping stage, should considerably reduce the

AIT-WOODDES Deliverable:

October 2001 M2/CEA/WP1.3/V2.1

Internal Page 134

iteration loop between the design and implementation of real-time systems. It is highly suitable to detect
any infringement of the temporal requirements at the design level by simulation (execution of the design
model) because of the smaller cost induced by a modification.

Real-time systems, in particular hard real-time ones, often execute several threads in parallel. Such
threads can be defined in tasks [Douglass, 99 #70] and all the system tasks must be identified e.g. in a
system task diagram. At implementation, it is necessary to map the system specification onto tasks
and to allocate these tasks to processors. At this point, a scheduling analysis is needed to ensure that
all tasks (processes) will meet their deadlines, and to verify the temporal requirements. There exist
methods for scheduling analysis such as e.g. the Rate Monotonic Scheduling that can be applied for
this purpose. However this aspect of the implementation is not fully covered by the WOODDES
methodology and is left for further investigation.

4.4.2 Tool Support

Developed tools should integrate new features providing the necessary help for industrial software
development. In particular, they should give full support for application deployment using visual models.

Deployment Editor:

The transformation of logical UML models into efficient implementations is a key-activity for UML-based
application development. The purpose of the Deployment Editor and Targeting Expert is precisely to
provide support in this activity. Deployment diagrams describe the physical architecture of the
application and the relation between the logical entities like UML classes and this physical architecture.
This is essentially a model based on the following main concepts:

- Nodes, i.e. the hardware platforms on which the application will run;

- Components, i.e. the executable files that make up the application;

- Logical entities that run in the threads, i.e. component property set either to light (only one thread for
the entire system), or tight (one thread per instance) or instance-set (one thread per instance set).

An example of a deployment diagram is shown in Figure 116. The aggregation structure illustrates the
relations between the different entities, which components can execute on which node type and which
entities can run in each component. The UML stereotypes used in this diagram are derived from the
UML profile elaborated for SDL (Telelogic).

AIT-WOODDES Deliverable:

October 2001 M2/CEA/WP1.3/V2.1

Internal Page 135

d1

WinWS

G S

«process»

Main
«process»

Game
«process»

Demon

Figure 116: A Typical Component Diagram.

The UML model and the deployment diagrams cover two of the most important aspects of an application,
the logical behaviour and the physical structure.

Targeting Expert:

The purpose of the Targeting Expert tool is to further define the details of each component in the
physical structure. It should guide the user through implementation choices that are available for each
component and make it possible to fine-tune the execution of the generated applications and to define
the details of the build process. It can also be the tool for building the application, that could execute
both in interactive mode, mainly for setting up the generation and build properties, and in batch mode, to
build the final application.

Typical properties that are described using Targeting Expert are for example:

• Details of the code generator to be used;

• Details of the compiler that is used, e.g. optimisation issues like whether the compiler most
efficiently handles characters or integers, the environment variable settings required;

• Definition of which communication links to use within the application, which encoders/decoders to
use;

• Description of what tool has to be used to download the generated application onto the target
platform.

These properties can be set either for a complete application, for all components running on specific
nodes or for specific components only.

The Deployment editor and the Targeting expert could be part of a more general deployment
environment, including also legacy code for reuse and an abstract interface to the RTOS.

AIT-WOODDES Deliverable:

October 2001 M2/CEA/WP1.3/V2.1

Internal Page 136

5 PHASE – “BUILD PROTOTYPE MODEL”

Purpose of this modelling and waited results (i.e. types of diagrams the step has to provide, which level
of detailed to reach, possibly some contractual and/or formatted document to supply at the end of the
step for the next step, …)

5.1 Diagram to use

Identify the diagram to use and for each the main notations (in particular, in relation with diagram and
notation proposed for AIT-WOODDES profile in deliverable M1, with explicit list and motivation on
extensions, specialisation)

5.2 Model consistency rules

Definition of the main consistency rules to be defined among the diagrams to allow the global model to
be unambiguous and complete

AIT-WOODDES Deliverable:

October 2001 M2/CEA/WP1.3/V2.1

Internal Page 137

6 PHASE – “VALIDATE MODELS”

In this section we describe the validation concerns of the AIT-WOODDES methodology. The methods
covered here are based on the AIT-WOODDES process definition, described in the deliverable M3, which
describes in detail the process in which the methods are applied.

In the AIT-WOODDES process, seven activities have been identified: Pre-Analysis, Analysis, Design,
Detailed Design, Implementation, Integration, Final Validation. In addition, a validation activity has been
identified, which will be performed in parallel throughout the process to support the other activities. The
purpose of the validation performed in each activity is mainly to check that the output produced is
consistent with the requirements specified for the product under development and that the output of an
activity is consistent with the output of the preceding activity in the process.

The validation methods described in this section will focus on the methods needed to perform the
validation activity. However, before describing the actual validation methods, we summarise the validation
needs of the process described in the deliverable M3.

6.1 Validation Methods of the Development Process

The validation methods identified in the development process are described in terms of use cases. In the
following we give and overview of the need for validation methods that are identified in the use cases:

Pre-Analysis

Here the consumer requirements on the product to be developed are documented. An acceptance test of
the consumer is also specified.

Validation methods are needed to specify and validate the consumer requirements, and to verify that the
specified requirements are complete and consistent. Methods for test case generation will be needed to
specify the acceptance tests.

Analysis

In this activity the requirements produced in the pre-analysis step are formalised. A product
requirements specification for regression testing of the product requirements is also produced.

In order to check that the produced requirements correspond to the user requirements derived in the pre-
analysis step, validation methods such as formal verification will be used. In addition, simulation can be
used to support the verification.

Design

Here the details of the design model are worked out. The system is divided into several modules and the
collaboration and interfaces between the modules are specified. From the validation point of view this
means that the various modules must be analysed to ensure that the modules can be composed
together and integrate to fulfil the requirements specification of the developed product.

The required validation methods will be simulation, formal verification, and integration test specification.

AIT-WOODDES Deliverable:

October 2001 M2/CEA/WP1.3/V2.1

Internal Page 138

Detailed Design

In the detailed design stage of the process, the detailed behaviour and the control algorithms of the
modules of the design are decided. Thus, the exact behaviour of every module must be formally specified
and analysed by means of validation.

The validation methods applied here are model simulation, formal verification and test case generation.

Implementation

Here the behavioural specification of each model is transformed into a program code unit of the actual
target platform. Unit level testing is also conducted.

The validation concerns here are unit level testing to check that each module performs according to the
module test specification.

Integration

The units resulting from the implementation are put together to ensure that the integrated system
performs according to the formal requirement specification of the whole system.

The main validation method here is integration testing to check that the system meets its requirement
specification.

Final Validation

The integrated system is presented to the customer to get acceptance tested to ensure that the
customer’s requirements are fulfilled. At this point everything is supposed to work.

Acceptance testing will be the main validation method used for final validation.

6.2 Validation Methods for UML Models

In the following we describe the validation and verification methods used in the development process to
validate UML models, i.e. the analysis and design models. The presented techniques can be applied
manually or with tool support by (at least) one of the tools in the consortium40. The methods are divided
into four parts: Sanity Checks, Simulation, Verification, and Testing. In addition we list some validation
methods for implementations that may also be applied to UML models.

6.2.1 Sanity Checks

Sanity checks are used to validate assumptions that went into the development processes and are
possibly violated at later stages. The sanity properties contribute only indirectly to the correctness of the
model.

40 Some of the presented validation and verification techniques are not yet supported by the tools, but are parts

of current or planed developments and will become available in the near future.

AIT-WOODDES Deliverable:

October 2001 M2/CEA/WP1.3/V2.1

Internal Page 139

Syntax and Type Checks

The UML modeling language comes with a set of requirements on the various modeling items. Checking
these is necessary to ensure the consistency (which is often not obvious for large models).

Syntax and type checking should be done on the analysis and design models.

Consistency Checks

Consistency checks ensure that statecharts and activity diagrams are well-formed, as well as checks for
detecting conflicts such as stereotypes of class with is in conflict with its specification or an abstract
operation assigned by the body.

Consistency checks are applied to analysis and design models.

Conformance Checks

The conformance checks aim at guaranteeing a correspondence between the models in the different
states of the development process. The conformance checks should ideally be done (algorithmically) to
establish a refinement relation between two models.

The conformance check should be applied whenever a model is refined and made more detailed. In
particular, the design model should be conformance checked with respect to the analysis model, and
similarly the implementation model with respect to the design model.

6.2.2 Simulation

Simulation is the process of virtually executing or imitating of a model by means of software. This is
useful for debugging the model thereby increasing the developer’s confidence. Simulation is also useful
for visualizing error scenarios found by other validation and verification methods.

User-Guided Simulation

In user-guided simulation the user interacts with a simulation tool (i.e. a simulator) to validate the model
behavior against the intended system functionality with the purpose to find errors in the model and to
gain increased confidence in the model.

User-guided simulation is suitable for the analysis model and the design model.

Random Simulation

In (intensive) random simulation, a simulator fires transitions automatically; when several transitions can
be fired, the simulator fires one of them “at random”. A typical solution for this random is to use a special
number called seed, to calculate a series of random choices.

Usually, the seed is a parameter in the simulator that can be modified. But alternatively for a given
specification and a given seed value, the simulator will always execute the same scenario.

Main advantage of random simulation is that it can handle very large models, but it is not sure that all
the behaviours of the specification have been covered (a coverage view of the specification can be given
to assess the validity of results).

AIT-WOODDES Deliverable:

October 2001 M2/CEA/WP1.3/V2.1

Internal Page 140

In random simulation can be done on the analysis model and the design model.

Trace-Guided Simulation

Here the simulator run is determined by a usually machine-generated trace. The method is mainly used
to explore a trace of particular interest, e.g. an error scenario found using a verification tool.

Trace-guided simulation is applied to the analysis model and the design model.

Trace-Guided Simulation using Simulated Time

(Merge this with section “Trace-Guided Simulation”) An ordinary trace-guided simulation is conducted
but the system outputs a time stamped trace using user’s time estimations instead of the actual
execution times of the model. The simulated time is used for isolating environmental influences such as
code instrumentation overhead, operating system impacts, etc.

Trace-guided simulation using simulated time is applicable to the analysis model and to the design
model.

6.2.3 Formal Verification

The aim of formal verification is to provide techniques and tools as design aids to provide reliable control
systems. During verification of a model, special purpose algorithms are applied to formally establish
properties expressed as logical formulae, sequence charts, or by observers in the model. The verification
will prove or disprove the given properties. The properties are derived from the requirement specification of
the modelled system or from previous stages of the development process (as described in Figure 1). In
the following we describe the considered verification techniques.

Functional Verification

Functional verification is used to check the functional behaviour of a model. Properties to describe the
functional behaviour can be classified as

• Safety properties

• Liveness properties.

Safety properties (or invariants) are of particular interest as they can be used to establish a model, in all
reachable states, satisfies a specified condition. Dually can safety properties be used to express that a
condition is never met in the model. This is of particular interest as it can be used to show that the
model never behaves in an undesired or unsafe manner. A variety of specialized and efficient algorithms
for checking safety properties exist, that can verify safety properties without human interaction.

Liveness properties are used to express that a desired system state is guaranteed to eventually be
reached, or that a situation will be reached infinitely often (permitted an infinite run).

Properties derived from the requirement specification can be checked on the analysis model and on the
design model.

From a user point of view formal verification can be used for two key use cases:

AIT-WOODDES Deliverable:

October 2001 M2/CEA/WP1.3/V2.1

Internal Page 141

• model debugging,

• model verification as certification.

Model Checking as a Debugging Tool

In the debugging approach the user can define "breakpoints", which he/she would like to observe. The
verification engine is used to check whether these breakpoints are reachable or not. In the case that a
breakpoint can be reached, the verification engine will offer a scenario describing a system run leading to
the breakpoint. Breakpoints can be described as

• Drive-to-state: The user specifies a single state of a state machine he would like to examine.

• Drive-to-configuration: In this case the user specifies a set of states (i. e. states of different
concurrent substates) and check whether a configuration, which contains all specified states,
can be reached.

Example: Is it possible to reach a configuration where concurrent sub state s1 is in state s12 and the
concurrent sub state s2 is in state s23? (see Figure 117).

• Drive-to-property: This is the most general case where the user specifies a boolean condition
and asks whether the system can be driven into a configuration satisfying the given boolean
condition.

Example: Is it possible to reach a configuration where the value of the attribute x is equal to zero? Is it
possible to reach a situation where the system is in state s12 and x is not equal to zero?

s1 s2

s11 s12

s13 s14
s23

s22

s21

. . .

. . .

. . .

. . .

. . .

. . .

. . .

Figure 117: Drive-to-configuration (s12, s23)

Model Checking as a Certification Tool

In a certification use-case, model checking is used to formally validate a system model against given
requirement specifications. Given the system model and a set of safety critical requirements the model
checker will provide certification evidence that the requirements are never violated by the model. In this
case we would like to prove properties like:

AIT-WOODDES Deliverable:

October 2001 M2/CEA/WP1.3/V2.1

Internal Page 142

• Will the central locking system unlock the car in a crash even when ...?

• Under no circumstances the steering will be locked when ignition is on.

• When the speed regulator is switched on, the speed will never exceed the specified limit.

The model checker expects that the system requirements are given as temporal logic formulae. As in
the debugging mode, where the user only specifies a state, a configuration, or a boolean property, which
is then translated internally into a temporal logic query for the model checker, we will provide a set of
predefined patterns to describe requirements in a formal way. Some of the patterns will be given in a
textual form, e.g.

whenever P then Q.

The user selects the pattern and defines properties for its parameters. E.g.

P: regulator is switched on

Q: speed is within the given bound

Other patterns will be given in a graphical form using LSC (Life Sequence Charts).

pre

post

Inst1 Inst2

m1()

Figure 118: Specifiying pre- and post-conditions of a method call

Figure 118 shows a pattern to specify the effect of a method calls. Whenever the instance Inst1 calls
method m1() in a situation satisfying the precondition pre41 it is expected that the post condition post
holds when Inst1 receives the result of the method call. In the LSC of Figure 118 the black circle

41 In the LSC notation (see [29]) the precondition is indicated as a cold condition (dashed line) as it is not required that a

situation satisfying pre occurs.

AIT-WOODDES Deliverable:

October 2001 M2/CEA/WP1.3/V2.1

Internal Page 143

specifies a co-region, i.e. the condition pre is evaluated at the same time instance as the method call is
initiated.

The pre- and post-conditions are not restricted to the attributes visible at Inst1 but may contain also
references of other instances for example of Inst2. An example could be that the method call m1() is
invoked in a situation where the state machine defining the behaviour of Inst2 is in a specific
configuration. Imagine for example that Inst2 has two operating modes, normal mode and emergency
mode. Then the pattern could be used to specify the result of the method call provided Inst2 is in normal
mode. In the example chart (see Figure 119) the call of m1 in normal mode results in the execution of
action a1. But if m1 is called in a situation where Inst2 is in the emergency mode action a2 is executed
which may yield to another result and thus violating the given post condition.

Normal

Emergency

m1 / a1

m1 / a2

Figure 119: State machine with two operating modes: Normal and Emergency

In the general case we can use the methods to formalize a case splitting as indicated in Figure 120.

c1

post1

Inst1 Inst2

m1()
c2

post2

Inst1 Inst2

m1()
c3

post3

Inst1 Inst2

m1()

Figure 120: Case splitting

A typical use case for verification is to check that of invariant properties. An invariant property can be
applied to the complete runs of a system, i.e. this would be of the form

AIT-WOODDES Deliverable:

October 2001 M2/CEA/WP1.3/V2.1

Internal Page 144

invariance (P)

without further constraints. On the other hand the invariant property can be restricted to a specific phase
of a run. In Figure 121 the invariant inv should hold between two execution instances specified by
receiving events e1 and e2. The interval in which the invariance should hold can be defined by different
actions: sending or receiving events, method calls, or by specifying conditions. Conditions should only
be used in combination with other observable items defining a concrete status of the system where the
condition has to be evaluated. Alternatively, a starting condition could be given as an activation condition
(see Figure 122).

inv

Inst1 Inst2

e1

e2

Figure 121: Specifiying an invariance

For example the events e1 and e2 may coincide with switching the speed regulator on and off. If the
speed regulator is switched on, the speed of the vehicle should be in the range as specified unless the
stop signal is received.

inv

Inst1 Inst2

e2

Act_cond

Figure 122: Invariant property invoked by an activation condition

AIT-WOODDES Deliverable:

October 2001 M2/CEA/WP1.3/V2.1

Internal Page 145

Deadlock Detection

Deadlocks correspond to situations where no further progress is possible - the system "freezes". This
class of undesired behaviors can be verified automatically to a large extend.

Deadlock detection can be performed in the design model (and observed in the implementation model).

Live-Lock Detection

When live-locked, a system continues to change its state without doing any useful work wrt. some
notion of "progress". Live-locks are harder to detect than deadlocks, but in the reach of algorithmic
treatment.

Live-lock detection should be applied on the analysis model and the design model.

Time-Stop and Zeno Detection

Real-time models possibly reach situations where no progress of time is possible (so called time-stops),
or time progresses but never exceeds a certain limit (called Zeno behavior). These are errors in the
model that do not correspond to any real-life behavior of an implementation. It is therefore important to
establish time-stop freedom and non-zenoness in any model with time, otherwise some established
model properties can not be trusted to be present in the implementation as well.

Time-stop and Zeno detection should be applied to the analysis model and the design model.

6.2.4 Testing

Testing is the process of exercising a model to identify differences between expected and actual
behavior. Testing involves one or more test runs, each of which explores one possible evolution of the
system.

Glass Box Testing

Test generation via approaches based on structural coverage tests aiming to a single test per possible
behaviour of an application.

Glass box testing is applicable to the analysis model and the design model.

Regression Testing

The problem addressed is that each time an error is corrected or a change is made in the specification,
it must be checked that no new errors have been introduced. This can be realised by means of MSCs
that will define all the inputs sent to (or all the outputs received from) the system specification; a
simulator will then be piloted by these MSCs, and will check that the outputs correspond.

Regression testing will detect inconsistencies between the specification and the reference MSCs.
Additional checks can be made on existence of process instances or value of process variables.

Regression testing can be applied to the design model.

AIT-WOODDES Deliverable:

October 2001 M2/CEA/WP1.3/V2.1

Internal Page 146

6.2.5 Other Methods

Other methods for validating the models include: dead-code detection, performance evaluation,
exhaustive test case generation, and co-simulation and co-execution. These methods are described in
more detail in the next section devoted to methods that mainly applicable to implementations.

6.3 Validation Methods for Implementations

In the following we describe the validation and verification methods used in the development process to
validate implementations derived from UML models.. The presented techniques can be applied manually
or with tool support by (at least) one of the tools in the consortium42. The methods are divided into three
parts: Sanity Checks, Simulation, and Testing. In addition we list some validation methods for UML
models that may also be applied to implemenations.

6.3.1 Sanity Checks

Sanity checks are used to validate assumptions that went into the development processes and are
possibly violated at later stages. The sanity properties contribute only indirectly to the correctness of the
model.

Code Sanity Checks

Code sanity checks searches generated code for errors that originate from version shifts, lax typing, or
known compiler bugs. Special techniques from compiler theory and (strong) type checking can be
applied here.

Code sanity checks should be applied to the source code of the implementation model.

Dead-Code Detection

A part of a model or an implementation that is guaranteed to never be reached or executed is called
"Dead-Code". In the modeling case, dead code is an unreachable state or transition (i.e. a transition
that is never taken). In general dead-code detection can be treated by reachability analysis (see
Verification below), but also syntactic techniques exist.

Dead-code detection should primarily be applied to the design model but also to the implementation
model.

6.3.2 Simulation

Simulation is the process of virtually executing or imitating of a model by means of software. This is
useful for debugging the model thereby increasing the developer’s confidence. Simulation is also useful
for visualizing error scenarios found by other validation and verification methods.

42 Some of the presented validation and verification techniques are not yet supported by the tools, but are parts

of current or planed developments and will become available in the near future.

AIT-WOODDES Deliverable:

October 2001 M2/CEA/WP1.3/V2.1

Internal Page 147

Performance Evaluation

Performance analysis is a cross-border domain, as it requires resource description, which is actually not
available in UML. Current work in progress aims at introducing timed extensions to UML in order to
address this kind of analysis.

On the technical side, performance analysis requires extensions to current verification techniques. We
need to deal precisely with time, without worsening the state explosion problem. For this, state-of-the-art
techniques may use symbolic representation of clocks.

Performance evaluation can be performed on all models during the development.

6.3.3 Testing

Testing is the process of exercising a model to identify differences between expected and actual
behavior. Testing involves one or more test runs, each of which explores one possible evolution of the
system.

Conformance Testing

This is the process of establishing the extent to which an Implementation Under Test (IUT) satisfies both
static and dynamic conformance requirements (i.e. features given in a standard with which a product
implementing that standard must conform), consistent with the capabilities stated in the implementation
conformance statement (i.e. the document supplied by the manufacturer of the product).

A conformance test consists of two parts: the static conformance review (checking that implementation
choices are permitted by the standard) and the dynamic conformance test (execution of test cases to
determine whether the product has implemented the standard correctly. Each test case within a test
suite is related to one conformance requirement of the standard.

Conformance testing should be done on the implementation model (and the design model???).

Exhaustive Test Case Generation

As a basic solution, generation of scenarios by simulation can provide reference to test
implementations. These scenarios will complete the specification from a dynamic point of view. Because
they are generated by simulation, they are sure to be consistent with the specification.

A first step consists in finding pertinent test objectives based on the requirements specification. A
second step consists in formalizing test objectives described informally. For this one can use MSCs, by
which partial scenarios are described which will be completed by simulation. The third and final step
consists in running the simulation to obtain all the test scenarios (if any) corresponding to the test
objectives.

Exhaustive test case generation can be applied to the design models and the implementation models.

Co-Simulation and Co-Execution

This type of simulation (or execution) consists in running (executing) the system specification
(implementation) and the test specification (executable tests) simultaneously. Most benefit is achieved

AIT-WOODDES Deliverable:

October 2001 M2/CEA/WP1.3/V2.1

Internal Page 148

when the system specification and the test specification come from two different sources. In this case, if
the co-simulation runs (co-execution executes) without errors, then the system fulfils its requirements.

Co-simulation (or co-execution) is performed on the design model or the implementation model.

6.3.4 Other Methods

In addition to the methods described in this section, conformance checking can also be applied to
implementations. For more information about conformance checks see section 3.2, which describes
validation methods that are mainly applicable to UML models.

AIT-WOODDES Deliverable:

October 2001 M2/CEA/WP1.3/V2.1

Internal Page 149

APPENDIX 1 - UML BASICS

1 Use case modeling

The main model elements manipulated in the use case diagrams are:

• UseCase that describes the behavior of a system or other semantics entities without revealing its
internal structure;

• Actor that models a coherent set of "roles" played by users with respect to an entity with which
they are interacting.

In UML, use cases can be linked by generalization, inclusion (« include ») or extension (« extend »)
relationships [11] :

− the generalization relationship between two use cases has the same meaning as for two related
classes;

− the inclusion relationship is a means for factorizing system behaviour. This means that the initial use
case explicitly includes the behaviour of another use case at a given point in its sequence;

− the extension relationship is used to model optional behaviours for a given use case. This case is
then said to have a "variation point". Assignment of a variation point results in one of two possible
configurations: In the first, the extension is not taken into account; in the second, the use case
described by the extension is included in the initial case.

The speed regulator example given in Figure 123 illustrates possible relationships between use cases. In
this example, the "stop regulation" function serves as a use case for the various types of relationships
described above.

The diagram in Figure 123 depicts the following:

− the "stop regulation" use case has two variants – "stop regulation by braking" and "stop regulation by
actuating on/off button"– which correspond to the different regulator stop cases described in project
specifications.

− the "stop regulation" use case has a variation point labeled "emergency action". This use case thus
comprises both a so-called "normal" regulator stop scenario (most common type of behaviour) and a
second scenario that also incorporates the scenario contained in the use case associated with the
initial scenario via the extension relationship. This relationship presents a variant with respect to
"normal" system stop;

− the "stop regulation" use case has two included use cases furnishing a more detailed description of
certain behavioural aspects ("refresh display" and "stop speed acquisition").

AIT-WOODDES Deliverable:

October 2001 M2/CEA/WP1.3/V2.1

Internal Page 150

emergency action
stop regulation

Extension points:
emergency action

« extend »

emergency action

refresh display stop speed acquisition

stop by braking stop via button

« include » « include » Key:

 generalization

 depen dencyrelationship

 use case

 " .. " stereotype

Figure 123: Examples of Use Case Relationships.

Although not the case in the example given here, two actors may be linked by what is known as an
inheritance relationship. This means that, with respect to the system, the "inheriting" actor will exhibit
the same behaviour as its "parent" (actor).

AIT-WOODDES Deliverable:

October 2001 M2/CEA/WP1.3/V2.1

Internal Page 151

AIT-WOODDES Deliverable:

October 2001 M2/CEA/WP1.3/V2.1

Internal Page 152

GLOSSARY

Activity A work definition describing what a role performs. Activities are part of a
stage and/or Iteration and may contains Step

DAM Detailed Analysis Model

Goal A goal is a specific condition that is satisfied at the end of a given Work
Definition such as the end of an activity group or a phase.

IRD Initial Requirements Document

Milestone Synonym for the goal of a phase.

PAM Preliminary Analysis Model

Phase A phase is the highest level of granularity in describing the work performed in
a process. The process lifecycle describes the phase sequel of a process. It
may be decomposed in different activities.

Work Product Work Product is a description of a piece of information or physical entity
produced or used by the activities of the software engineering process.
Examples of work products include models, plans, code, executables,
documents, databases, and so on.

AIT-WOODDES Deliverable:

October 2001 M2/CEA/WP1.3/V2.1

Internal Page 153

BIBLIOGRAPHY

[1] OMG, “The Software Process Engineering Metamodel (SPEM),” OMG, Revised Submission
ad/2001-06-05, 9/27/2001 2001.

[2] L. T. J. Aubry, M.Larborn, N. Voros, S. Batistos, S. Kostavasili, “End users requirements
specification,” IST-1999-10069, Report D1/PSA/WP1/V2.0, 2001.

[3] F. T. S. Gérard, E. Palachi, P. Pettersson, D. Alexandre, “UML profile for real time embedded
systems development,” IST-1999-10069, public document 2001.

[4] S. Gérard, “Modélisation UML exécutable pour les systèmes embarqués de l'automobile,” in
GLSP. Paris: Evry, 00.

[5] J. Rumbaugh, M. Blaha, W. Premerlani, F. Eddy, and W. Lorensen, Object-Oriented Modelling
and Design: Prentice Hall, 91.

[6] I. Jacobson, M. Christerson, P. Jonson, and G. Övergaard, Object-Oriented Software Engineering
: A Use Case Driven Approach, 92.

[7] B. P. Douglass, Doing Hard Time : Developing Real-Time Systems with UML, Objects,
Frameworks, and Patterns: Addison Wesley, 99.

[8] M. Broy, “Requirements Engineering for Embedded Systems,” presented at FemSys'97, 1997.

[9] P. Desfray, Modélisation par objets : la fin de la programmation, MASSON ed, 96.

[10] I. Jacobson, “Formalizing use-case modeling,” JOOP, 95.

[11] J. Rumbaugh, I. Jacobson, and G. Booch, The Unified Modeling Language Reference Manual:
Addison-Wesley, 99.

[12] S. Gérard, F. Terrier, J.-L. Roux, I. Ober, E. Palachi, D. Alexandre, and U. Brockmeyer, “UML
notations and semantics for real time embedded systems,” AIT-WOODDES, Paris, Internal
Report 01/10/2000 2000.

[13] F. Terrier, G. Fouquier, D. Bras, L. Rioux, P. Vanuxeem, and A. Lanusse, “A Real Time Object
Model,” presented at TOOLS Europe'96, Paris, France, 96b.

[14] B. Liskov, “Distributed Programming in Argus,” Communication of ACM, vol. 31, pp. 300-312,
1988.

[15] O. M. Nierstratz, “Active Objects in Hybrid,” presented at OOPSLA'87, 1987.

[16] R. Chandra, A. Gupta, and J. Hennessy, “COOL: An Object-Based Language for Parallel
Programming,” IEEE Computer, vol. 27, 1994.

AIT-WOODDES Deliverable:

October 2001 M2/CEA/WP1.3/V2.1

Internal Page 154

[17] F. Terrier, D. Bras, G. Fouquier, L. Rioux, and P. Vanuxeem, “Objets temps réel et
ordonnancement par échéance,” presented at Fourth Conference on Real-Time Systems and
Embedded Systems (RTS&ES'96), Paris, France, 96a.

[18] B. Selic, G. Gullekson, and P. T. Ward, Real time Object-oriented Modeling: John Wiley & Sons,
Inc., 94.

[19] D. Harel, “Statecharts : A Visual Formalism for Complex Systems.,” Science of Computer
Programming, vol. 8, pp. p231-274, 87a.

[20] OMG, “Unified Modeling Language Specification (version 1.4),” OMG, Request for proposal
formal/01-09-67, September 2001 00.

[21] A. Tanenbaum, Systèmes d'exploitation, systèmes centralisés, systèmes distribués, 1994.

[22] P. Pushner and C. Koza, “Calculating the maximum execution time of real-time programs,”
Journal of real-time systems, vol. 1, pp. 159-176, 1989.

[23] J. P. Babau, S. Gérard, and F. Cottet, “Méthodologie de mesure de durée d'exécution de tâche
d'une application temps réel à contraintes strictes,” presented at RTS'96, Paris, 1996.

[24] G. Booch, Object Oriented Analysis and Design with Applications, second edition ed. Redwood
City, CA, 1994.

[25] I. Krüger, R. Grosu, P. Scholz, and M. Broy, “From MSCs to Statecharts,” presented at
Distributed and Parallel Embedded Systems, 99.

[26] ITU-T, “Recommendation Z.120 : Message Sequence Chart (MSC),” ITU-T, Geneva 96c.

[27] W. Damm and D. Harel, “LSCs: Breathing Life into Message Sequence Charts,” Weizmann
Institute Report CS98-09, April 1998 98.

